平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為類比這個(gè)結(jié)論,空間中,如果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R.那么凸多面體的體積V、表面積球半徑R之間的關(guān)系是________.

答案:
解析:

  答案:

  解析:凸多面體可以分割成以內(nèi)切球的球心為公共頂點(diǎn)、球的半徑為高的棱錐,多面體的體積等于所有棱錐的體積之和.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長(zhǎng)寧區(qū)一模)我們知道,在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為S=
1
2
cr
.類比這個(gè)結(jié)論,在空間中,果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是
V=
1
3
S′R
V=
1
3
S′R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末理科數(shù)學(xué) 題型:填空題

我們知道,在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為。類比這個(gè)結(jié)論,在空間中,如果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是                。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省日照市高三上學(xué)期測(cè)評(píng)理科數(shù)學(xué)試卷 題型:填空題

我們知道,在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為。類比這個(gè)結(jié)論,在空間中,果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省德州市樂陵一中高三(上)期末數(shù)學(xué)復(fù)習(xí)訓(xùn)練試卷13(解析版) 題型:填空題

我們知道,在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為.類比這個(gè)結(jié)論,在空間中,果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市長(zhǎng)寧區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

我們知道,在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為.類比這個(gè)結(jié)論,在空間中,果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是   

查看答案和解析>>

同步練習(xí)冊(cè)答案