已知為上的可導(dǎo)函數(shù),且,均有,則有( )
A.,
B.,
C.,
D.,
D
【解析】
試題分析:根據(jù)題目給出的條件:“f(x)為R上的可導(dǎo)函數(shù),且對?x∈R,均有f(x)>f'(x)”,結(jié)合給出的四個選項,設(shè)想尋找一個輔助函數(shù)g(x)=,這樣有以e為底數(shù)的冪出現(xiàn),求出函數(shù)g(x)的導(dǎo)函數(shù),由已知得該導(dǎo)函數(shù)大于0,得出函數(shù)g(x)為減函數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.解:令g(x)=,故,因為f(x)>f'(x),所以g′(x)<0,所以函數(shù)g(x)為R上的減函數(shù),所以g(-2013)>g(0),所以e2013f(-2013)>f(0),f(2013)<e2013f(0).故選D.
考點:導(dǎo)數(shù)的運算
點評:本題考查了導(dǎo)數(shù)的運算,由題目給出的條件結(jié)合選項去分析函數(shù)解析式,屬逆向思維,屬中檔題
科目:高中數(shù)學(xué) 來源:2014屆江西師大附中高三年級10月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知為上的可導(dǎo)函數(shù),當(dāng)時,,則關(guān)于的函數(shù)的零點個數(shù)為( )
A.1 B.2 C.0 D.0或2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三3月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知為上的可導(dǎo)函數(shù),且,均有,則有( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知為上的可導(dǎo)函數(shù),當(dāng)時,,則關(guān)于x的函數(shù)的零點個數(shù)為( )
A.1 B.2 C.0 D.0或 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com