在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E為垂足,則PE的長為______.
如圖,矩形ABCD中,AB=3,BC=4,∴BD=
9+16
=5,
∵PA⊥平面ABCD,且PA=1,PE⊥BD,E為垂足,
∴AE⊥BD,
1
2
AB•AC
=
1
2
BD•AE
,∴AE=
3×4
5
=
12
5
,
∴PE=
PA2+AE2

=
1+
144
25

=
13
5

故答案為:
13
5

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若空間中有兩條直線,則“這兩條直線為異面直線”是“這兩條直線沒有公共點”的                                                             (     )
A.充分非必要條件;B.必要非充分條件;C.充要條件;D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將邊長為a的正方形ABCD沿對角線AC折成直二面角,則BD的長度為( 。
A.
1
2
a
B.
2
2
a
C.
3
2
a
D.a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

二面角α-l-β大小為60°,半平面α、β內分別有點A、B,AC⊥l于C、BD⊥l于D,已知AC=4、CD=5,DB=6,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,正方體ABCD-A1B1C1D1的棱長為1,若E、F分別是BC、DD1中點,則B1到平面ABF的距離為( 。
A.
3
3
B.
5
5
C.
5
3
D.
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求點P到BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知△ABC為直角三角形,且∠ACB=90°,AB=8,點P是平面ABC外一點,若PA=PB=PC,且PO⊥平面ABC,O為垂足,則OC=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知矩形的周長為36,矩形繞它的一條邊旋轉形成一個圓柱,要使旋轉形成的圓柱的側面積最大,則矩形的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直三棱柱ADE-BCF中,∠ADE=90°,AD=AE=EF=2,M,N分別是AF,BC的中點.
(1)求證:MN平面CDEF;
(2)求多面體A-CDEF的體積V.

查看答案和解析>>

同步練習冊答案