【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類(lèi)似《最強(qiáng)大腦》的 PK 賽,兩隊(duì)各由 4 名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為( )
A. B. C. D.
【答案】C
【解析】
比賽結(jié)束時(shí) A 隊(duì)的得分高于 B 隊(duì)的得分的情況有3種;A全勝,A三勝一負(fù),A 第三局勝,另外三局兩負(fù)一勝,由此能求出比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率.
解:比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的情況有3種;A全勝,A三勝一負(fù),A第三局勝,另外三局兩負(fù)一勝,
∴比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為:
.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,組成一個(gè)樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問(wèn)題:“今有甲持錢(qián)五百六十,乙持錢(qián)三百五十,丙持錢(qián)一百八十,凡三人俱出關(guān),關(guān)稅百錢(qián).欲以錢(qián)多少衰出之,問(wèn)各幾何?”其譯文為:今有甲持560錢(qián),乙持350錢(qián),丙持180錢(qián),甲、乙、丙三人一起出關(guān),關(guān)稅共100錢(qián),要按照各人帶錢(qián)多少的比例進(jìn)行交稅,問(wèn)三人各應(yīng)付多少稅?則下列說(shuō)法錯(cuò)誤的是( )
A. 甲應(yīng)付錢(qián) B. 乙應(yīng)付錢(qián)
C. 丙應(yīng)付錢(qián) D. 三者中甲付的錢(qián)最多,丙付的錢(qián)最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(x,y)在△ABC的邊界和內(nèi)部運(yùn)動(dòng),其中A(1,0),B(2,1),C(4,4).若z=2x-y的最小值為M,最大值為N.
(1)求M,N;
(2)若m+n=M,m>0,n>0,求的最小值,并求此時(shí)的m,n的值;
(3)若m+n+mn=N,m>0,n>0,求mn的最大值和m+n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)解,則的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,若(),則稱(chēng)是“緊密數(shù)列”.
(1)已知數(shù)列是“緊密數(shù)列”,其前5項(xiàng)依次為,求的取值范圍;
(2)若數(shù)列的前項(xiàng)和為(),判斷是否是“緊密數(shù)列”,并說(shuō)明理由;
(3)設(shè)是公比為的等比數(shù)列,若與都是“緊密數(shù)列”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半圓的直徑,平面與半圓所在的平面垂直,,, ,是半圓上不同于,的點(diǎn),四邊形是矩形.
(Ⅰ)若,證明:平面;
(Ⅱ)若,求三棱錐體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)華南沿海地區(qū)是臺(tái)風(fēng)登陸頻繁的地區(qū),為統(tǒng)計(jì)地形地貌對(duì)臺(tái)風(fēng)的不同影響,把華南沿海分成東西兩區(qū),對(duì)臺(tái)風(fēng)的強(qiáng)度按風(fēng)速劃分為:風(fēng)速不小于30米/秒的稱(chēng)為強(qiáng)臺(tái)風(fēng),風(fēng)速小于30米/秒的稱(chēng)為風(fēng)暴,下表是2014年對(duì)登陸華南地區(qū)的15次臺(tái)風(fēng)在東西兩部的強(qiáng)度統(tǒng)計(jì):
(1)根據(jù)上表,計(jì)算有沒(méi)有99%以上的把握認(rèn)為臺(tái)風(fēng)強(qiáng)度與東西地域有關(guān);
(2)2017年8月23日,“天鴿”在深圳登陸,造成深圳特大風(fēng)暴,如圖所示的莖葉圖統(tǒng)計(jì)了深圳15塊區(qū)域的風(fēng)速.(十位數(shù)為莖,個(gè)位數(shù)為葉)
①任取2個(gè)區(qū)域進(jìn)行統(tǒng)計(jì),求取到2個(gè)區(qū)域風(fēng)速不都小于25的概率;
②任取3個(gè)區(qū)域進(jìn)行統(tǒng)計(jì), 表示“風(fēng)速達(dá)到強(qiáng)臺(tái)風(fēng)級(jí)別的區(qū)域個(gè)數(shù)”,求的分布列及數(shù)學(xué)期望.
附: ,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com