【題目】已知各項(xiàng)為正數(shù)的等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am、an使得 ,則 的最小值為

【答案】
【解析】解:設(shè)等比數(shù)列的公比為q,則由 a7=a6+2a5 , 可得到 a6q=a6+2 ,
由于 an>0,所以上式兩邊除以a6 得到q=1+ ,解得q=2或q=﹣1.
因?yàn)楦黜?xiàng)全為正,所以q=2.
由于存在兩項(xiàng) am , an 使得 ,所以,aman=8 ,
=8 ,∴qm+n2=8,∴m+n=5.
當(dāng) m=1,n=4時(shí), =2; 當(dāng) m=2,n=3時(shí), = ;當(dāng) m=3,n=2時(shí), = ;
當(dāng) m=4,n=1時(shí), =
故當(dāng) m=2,n=3時(shí), 取得最小值為 ,
所以答案是
【考點(diǎn)精析】本題主要考查了基本不等式和等比數(shù)列的基本性質(zhì)的相關(guān)知識點(diǎn),需要掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號);變形公式:;{an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+ )+
(1)若a>0,且f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為, 的中點(diǎn), 為線段上的動點(diǎn),過點(diǎn) 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號).

①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;

③當(dāng)時(shí), 的交點(diǎn)滿足;

④當(dāng)時(shí), 為五邊形;

⑤當(dāng)時(shí), 的面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2 sin( ),直線C的極坐標(biāo)方程為ρsinθ=1,射線θ=φ,θ= +φ(φ∈[0,π])與曲線C1分別交異于極點(diǎn)O的兩點(diǎn)A,B.
(I)把曲線C1和C2化成直角坐標(biāo)方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,則BD的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線經(jīng)過點(diǎn)軸、軸分別交于兩點(diǎn),且,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為3的正方形, 平面, 平面, .

(1)證明:平面平面;

(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號從小到大依次為007,032,…,則樣本中最大的編號應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個(gè)更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計(jì)算按這兩種方案所建的倉庫的體積;

(2)分別計(jì)算按這兩種方案所建的倉庫的表面積;

(3)哪個(gè)方案更經(jīng)濟(jì)些?

查看答案和解析>>

同步練習(xí)冊答案