為了分析某籃球運(yùn)動(dòng)員在比賽中發(fā)揮的穩(wěn)定程度,統(tǒng)計(jì)了該運(yùn)動(dòng)員在6場比賽中的得分,用莖葉圖表示如圖所示,則該組數(shù)據(jù)的方差為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用7練習(xí)卷(解析版) 題型:填空題
在△ABC中,A,B,C為內(nèi)角,且sin Acos A=sin Bcos B,則△ABC是________三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用3練習(xí)卷(解析版) 題型:填空題
已知f(x)是定義域?yàn)?/span>R的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用22練習(xí)卷(解析版) 題型:解答題
如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
從一副沒有大小王的52張撲克牌中隨機(jī)抽取1張,事件A為“抽得紅桃8”,事件B為“抽得為黑桃”,則事件“A+B”的概率值是________(結(jié)果用最簡分?jǐn)?shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
先后兩次拋擲一枚骰子,在得到點(diǎn)數(shù)之和不大于6的條件下,先后出現(xiàn)的點(diǎn)數(shù)中有3的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用20練習(xí)卷(解析版) 題型:填空題
設(shè)α和β為不重合的兩個(gè)平面,給出下列命題:
①若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;
②若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;
③設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;
④直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.
上面命題中,真命題的序號______(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用19練習(xí)卷(解析版) 題型:解答題
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓=1在M-1的作用下的新曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,以橢圓=1(a>b>0)上的一點(diǎn)A為圓心的圓與x軸相切于橢圓的一個(gè)焦點(diǎn),與y軸相交于B、C兩點(diǎn),若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com