【題目】在①函數(shù)的圖象向右平移個單位長度得到的圖象,圖象關(guān)于原點對稱;②向量,;③函數(shù)這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數(shù)的圖象相鄰兩條對稱軸之間的距離為

1)若,求的值;

2)求函數(shù)上的單調(diào)遞減區(qū)間.

【答案】1)答案不唯一,見解析 2

【解析】

由題意可得函數(shù)的周期

選①,可得,得,根據(jù)函數(shù)圖象關(guān)于原點對稱可求出,從而求出;

選②,可得,從而有;

選③,可得,從而有

1)由,則;

2)由可得函數(shù)上的單調(diào)遞減區(qū)間.

解:方案一:選條件①

由題意可知,

,,

又函數(shù)圖象關(guān)于原點對稱,,

,,,

1,;

2)由,得,

,得,令,得

函數(shù)上的單調(diào)遞減區(qū)間為

方案二:選條件②

,

,,,

1,;

2)由,得

,得,令,得

函數(shù)上的單調(diào)遞減區(qū)間為

方案三:選條件③

,

,,,

1,;

2)由,得

,得,令,得.

函數(shù)上的單調(diào)遞減區(qū)間為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于兩點,若點的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)對,不等式都成立,求整數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若的中點,過點作球的截面,則截面面積的最小值是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班從4位男生和3位女生志愿者選出4人參加校運會的點名簽到工作,則選出的志愿者中既有男生又有女生的概率的是__________.(結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與P關(guān)于直線對稱.

1)求雙曲線C的方程;

2)設(shè)直線與雙曲線C的左支交于A、B兩點,另一直線經(jīng)過AB的中點,求直線y軸上的截距b的取值范圍;

3)若Q是雙曲線C上的任一點,、為雙曲線C的左、右兩個焦點,從的角平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了配合今年上海迪斯尼樂園工作,某單位設(shè)計了統(tǒng)計人數(shù)的數(shù)學(xué)模型,以表示第個時刻進(jìn)入園區(qū)的人數(shù);以表示第個時刻離開園區(qū)的人數(shù).設(shè)定以15分鐘為一個計算單位,上午915分作為第1個計算人數(shù)單位,即;930分作為第2個計算單位,即;依次類推,把一天內(nèi)從上午9點到晚上815分分成45個計算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計算當(dāng)天14點至15點這1小時內(nèi)進(jìn)入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?

2)從1345分(即)開始,有游客離開園區(qū),請你求出這之后的園區(qū)內(nèi)游客總?cè)藬?shù)最多的時刻,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1)討論在其定義域上的單調(diào)性;

2)設(shè)m,n分別為的極大值和極小值,若S=m-n,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的準(zhǔn)線經(jīng)過點.

1)求拋物線的方程;

2)設(shè)是原點,直線恒過定點,且與拋物線交于,兩點,直線與直線分別交于點,.請問:是否存在以為直徑的圓經(jīng)過軸上的兩個定點?若存在,求出兩個定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案