【題目】中,角所對(duì)的邊分別為,下列命題正確的是_____________

①總存在某個(gè)內(nèi)角,使得;

②存在某鈍角,有;

③若,則的最小角小于

【答案】①③

【解析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個(gè)角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡(jiǎn)得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運(yùn)算,得到,由于不共線,得到,再由余弦定理,即可判定.

由題意,對(duì)于①中,在中,當(dāng),則

為直角三角形,則必有一個(gè)角在內(nèi);若為銳角三角形,則必有一個(gè)內(nèi)角小于等于;若為鈍角三角形,也必有一個(gè)角小于內(nèi),所以總存在某個(gè)內(nèi)角,使得,所以是正確的;

對(duì)于②中,在中,由,

可得,

為鈍角三角形,所以,所以,所以不正確;

對(duì)于③中,若,即,

,由于不共線,所以,

,由余弦定理可得,所以最小角小于,

所以是正確的.

綜上可得,命題正確的是①③.

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1 , 且a1, a2+1, a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{}的前n項(xiàng)和Tn , 求得|Tn-1|<成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個(gè)單位長(zhǎng)度.
(1)求函數(shù)的解析式,并求其圖像的對(duì)稱軸方程;
(2)已知關(guān)于X的方程內(nèi)有兩個(gè)不同的解,
(1)求實(shí)數(shù)M的取值范圍:
(2)證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F為拋物線E:的焦點(diǎn),點(diǎn)A(2,m)在拋物線E上,且|AF|=3

(1)求拋物線E的方程;
(2)已知點(diǎn)G(-1,0) , 延長(zhǎng)AF交拋物線E于點(diǎn)B , 證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐P-ABC中,PA平面ABC,

(1)(Ⅰ)求三棱錐P-ABC的體積;
(2)(Ⅱ)證明:在線段PC上存在點(diǎn)M,使得ACBM,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:,過(guò)點(diǎn)D(1,0)且不過(guò)點(diǎn)E(2,1)的直線與橢圓C交于A,B兩點(diǎn),直線AE與直線x=3交于點(diǎn)M。
(1)(I)求橢圓C的離心率;
(2)(II)若AB垂直于x軸,求直線BM的斜率。
(3)(III)試判斷直線BM與直線DE的位置關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(2015·重慶)如題(21)圖,橢圓的左右焦點(diǎn)分別為且過(guò)的直線交橢圓于兩點(diǎn),

。


(1)若求橢圓的標(biāo)準(zhǔn)方程。
(2)若,且,試確定橢圓離心率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案