【題目】如圖,正方形ABCD與正方形BCEF所成角的二面角的平面角的大小是 ,PQ是正方形BDEF所在平面內(nèi)的一條動(dòng)直線,則直線BD與PQ所成角的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
【答案】B
【解析】解:以B為原點(diǎn),BC為x軸,BA為y軸,過(guò)B作平面ABCD的垂線為z軸,建立空間直角坐標(biāo)系,
設(shè)BC=1,則B(0,0,0),D(1,1,0),C(1,0,0),
E(1, , ),F(xiàn)(0, , ),
當(dāng)D點(diǎn)在正方形BCEF的投影剛好落在CE上,記為G點(diǎn),其坐標(biāo)為G(1, , ),
此時(shí)BG與BD所成角剛好30度,
即直線BD與PQ所成角的最小值為 ,
取P( ,0,0),Q(0, , )時(shí),直線BD于PQ所成角取最大值,
∵ =(1,1,0), =(﹣ , , ),
∴cos< >= =0,
∴直線BD于PQ所成角最大值為 .
∴直線BD與PQ所成角的取值范圍是[ , ].
故選:B.
【考點(diǎn)精析】本題主要考查了異面直線及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為 ,則BD1與面A1BD所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,2),過(guò)點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是( )
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,現(xiàn)有一組數(shù)據(jù)(數(shù)據(jù)量較大),從中隨機(jī)抽取10個(gè),繪制所得的莖葉圖如圖所示,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)現(xiàn)從莖葉圖的數(shù)據(jù)中任取4個(gè)數(shù)據(jù)分別替換m的值,
求至少有2個(gè)數(shù)據(jù)使得函數(shù)f(x)沒(méi)有零點(diǎn)的概率;
(Ⅱ)以頻率估計(jì)概率,若從該組數(shù)據(jù)中隨機(jī)抽取4個(gè)數(shù)據(jù)分別替換m的值,記使得函數(shù)f(x)沒(méi)有零點(diǎn)的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且a +2an=4Sn(n∈N*).
(1)求an;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn= (n∈N* , n≥2),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中, , ,△PAB和△PBD都是邊長(zhǎng)為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點(diǎn);
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn= , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com