【題目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)對(duì)一切x∈(0,+∞),f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=﹣1時(shí),求函數(shù)f(x)在區(qū)間[m,m+3](m>0)上的最值;
(3)證明:對(duì)一切x∈(0,+∞),都有 成立.
【答案】
(1)
解:對(duì)一切x∈(0,+∞),f(x)≥g(x)恒成立,即xlnx﹣ax≥﹣x2﹣2恒成立.
也就是 在x∈(0,+∞)上恒成立.令 ,
則 .x∈(0,1)時(shí),F(xiàn)'(x)<0,x∈(1,+∞)時(shí),F(xiàn)'(x)>0.
因此F(x)在x=1處取極小值,也是最小值,即F(x)min=F(1)=3,
∴a≤3;
(2)
解:當(dāng)a=﹣1時(shí),f(x)=xlnx+x,f′(x)=lnx+2,由f'(x)=0得 .
當(dāng) 時(shí),在 上f'(x)<0,在 上f'(x)>0.
因此f(x)在 處取得極小值,也是最小值.故 .
由于f(m)=m(lnm+1)<0,f(m+3)=(m+3)[ln(m+3)+1]>0,
因此f(x)max=f(m+3)=(m+3)[ln(m+3)+1].
當(dāng) 時(shí),f'(x)≥0,因此f(x)在[m,m+3]上單調(diào)遞增,
故f(x)min=f(m)=m(lnm+1),f(x)max=f(m+3)=(m+3)[ln(m+3)+1];
(3)
證明:要證 成立,即證 ,x∈(0,+∞).
由(2)知a=﹣1時(shí),f(x)=xlnx+x的最小值是 ,當(dāng)且僅當(dāng) 時(shí)取等號(hào).
設(shè) ,x∈(0,+∞),則 ,易知 ,
當(dāng)且僅當(dāng)x=1時(shí)取到.
從而可知對(duì)一切x∈(0,+∞),都有 .
【解析】(1)對(duì)一切x∈(0,+∞),f(x)≥g(x)恒成立,即xlnx﹣ax≥﹣x2﹣2恒成立,可化為a≤lnx+x+ 在x∈(0,+∞)上恒成立.令F(x)=lnx+x+ ,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出;(2)把a(bǔ)=﹣1代入f(x),再求出f′(x),由f'(x)=0得 ,然后分類(lèi)討論,當(dāng) 時(shí),在 上f'(x)<0,在 上f'(x)>0,因此f(x)在 處取得極小值,由于f(m)=m(lnm+1)<0,f(m+3)=(m+3)[ln(m+3)+1]>0,因此f(x)max=f(m+3)=(m+3)[ln(m+3)+1],當(dāng) 時(shí),f'(x)≥0,因此f(x)在[m,m+3]上單調(diào)遞增,從而可求出函數(shù)f(x)在區(qū)間[m,m+3](m>0)上的最值;(3)要證 成立,即證 ,由(Ⅱ)知a=﹣1時(shí),f(x)的最小值是 ,當(dāng)且僅當(dāng) 時(shí)取等號(hào).設(shè) ,x∈(0,+∞),則 ,易知 ,當(dāng)且僅當(dāng)x=1時(shí)取到,即可證得結(jié)論.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱(chēng)這次取球獲得成功。某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對(duì)稱(chēng)軸為,且與軸兩個(gè)交點(diǎn)的橫坐標(biāo)的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請(qǐng)說(shuō)出平移的方式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線C的方程為 ,點(diǎn) ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(1)求曲線C的直角坐標(biāo)方程及點(diǎn)R的直角坐標(biāo);
(2)設(shè)P為曲線C上一動(dòng)點(diǎn),以PR為對(duì)角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長(zhǎng)的最小值及此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, ,是的內(nèi)心,若,其中,動(dòng)點(diǎn)的軌跡所覆蓋的面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)檢部門(mén)對(duì)某工廠甲、乙兩個(gè)車(chē)間生產(chǎn)的個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)克的為合格.
(1)質(zhì)檢部門(mén)從甲車(chē)間個(gè)零件中隨機(jī)抽取件進(jìn)行檢測(cè),若至少件合格,檢測(cè)即可通過(guò),若至少件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;
(2)若從甲、乙兩車(chē)間個(gè)零件中隨機(jī)抽取個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)說(shuō)偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計(jì)算出圖案中球與圓柱的體積比;
(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com