二階矩陣;
(1)求點在變換M作用下得到的點;
(2)設(shè)直線在變換M作用下得到了直線,求的方程.
(1),(2).

試題分析:(1)因為點在變換M作用下得到的點,設(shè),則∴解得(2)設(shè)直線l上任一點為,點P在M的作用下得到點在m上,則有
 且,∴即為所求直線方程.
解:(1)設(shè)         3分
∴解得                6分
(2)設(shè)直線l上任一點為,點P在M的作用下得到點在m上則
 且       12分
即為所求直線方程       14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

復(fù)數(shù)
1+i
1+2i
(i為虛數(shù)單位)=( 。
A.
3
5
+
1
5
i
B.
3
5
-
1
5
i
C.-
1
5
-
1
5
i
D.-
1
5
-
3
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若z=
2-i
1+2i
,則復(fù)數(shù)z的虛部為(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若矩陣把直線變換為另一條直線,試求實數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣A,若點P(1,1)在矩陣A對應(yīng)的變換作用下得到點P′(0,-8).
(1)求實數(shù)a的值;
(2)求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四邊形ABCD和四邊形AB′C′D分別是矩形和平行四邊形,其中各點的坐標(biāo)分別為A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求將四邊形ABCD變成四邊形AB′C′D的變換矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則=_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A=,B=,C=,求AB和AC.

查看答案和解析>>

同步練習(xí)冊答案