已知:如圖,圓錐SO的軸截面是等腰直角三角形,其母線長(zhǎng)為4a,A為底面圓周上一點(diǎn),B是底面圓內(nèi)一點(diǎn),且OB⊥AB,C是SA的中點(diǎn),D是O在SB上的射影.
(Ⅰ)求證:OD⊥平面SAB;
(Ⅱ)設(shè)平面SOA和平面SAB所成的二面角為θ(0<θ<),問(wèn)能否確定θ,使得三棱錐C—SOD的體積最大?若能,求出體積的最大值和對(duì)應(yīng)的θ;若不能,請(qǐng)說(shuō)明理由.
(1)證明 由SO垂直于⊙O所在平面,AB在⊙O內(nèi),可得AB⊥SO. ∵AB⊥SO,AB⊥OB,OBOS=O,∴AB⊥平面SOB. 而OD平面SOB, ∴OD⊥AB. 又OD⊥SB,SBAB=B, ∴OD⊥平面SAB. (2)解 由圓錐SO的軸截面是等腰直角三角形,得OS=OA. 又C是SA的中點(diǎn),∴OC⊥SA. 由OD⊥平面SAB,OC⊥SA,得DC⊥SA,∠OCD是平面SOA和平面SAB所成的二面角的平面角,則∠OCD=θ. 又∵OC⊥SA,DC⊥SA,OCDC=C, ∴SA⊥平面COD. 由題意知:△COD是Rt△,且. 故得:=·SC=OD·CD≤ =. 當(dāng)且僅當(dāng)OD=CD=a時(shí),最大. 即存在θ=,使得三棱錐C-SOD的體積最大,其體積的最大值為. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AB |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,已知在圓錐SO中,底面半徑r=1,母線長(zhǎng)l=4,M為母線SA上的一個(gè)點(diǎn),且SM=x,從點(diǎn)M拉一根繩子,圍繞圓錐側(cè)面轉(zhuǎn)到點(diǎn)A,求:
(1)設(shè)f(x)為繩子最短長(zhǎng)度的平方,求f(x)表達(dá)式;
(2)繩子最短時(shí),頂點(diǎn)到繩子的最短距離;
(3)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市十校高三(下)第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年上海市普陀區(qū)高三年級(jí)第二次質(zhì)量調(diào)研二模理科試卷(解析版) 題型:解答題
如圖,已知圓錐體的側(cè)面積為,底面半徑和互相垂直,且,是母線的中點(diǎn).
(1)求圓錐體的體積;
(2)異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問(wèn)中,由題意,得,故
從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得,
故從而體積.
(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com