已知函數(shù),,其中
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

(1)(2)

解析試題分析:解:∵,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7d/9/p9gkn1.png" style="vertical-align:middle;" />,
.                                    
是函數(shù)的極值點(diǎn),∴,                
.                                             
,∴.                                       
(2) 對(duì)任意的都有成立等價(jià)于對(duì)任意的
都有.                           
當(dāng)[1,]時(shí),
∴函數(shù)上是增函數(shù).
.                                 
,且
①當(dāng)[1,]時(shí),,
∴函數(shù)在[1,]上是增函數(shù),
.                                 
,得,
,∴不合題意.
②當(dāng)1≤時(shí),
若1≤,則
,則
∴函數(shù)上是減函數(shù),在上是增函數(shù).
.
,得
又1≤,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個(gè)函數(shù),使得同時(shí)滿足以下三個(gè)條件:①定義域,且;②當(dāng)時(shí),;③在中使取得最大值時(shí)的值,從小到大組成等差數(shù)列.(只要寫(xiě)出函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若函數(shù)上有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),請(qǐng)用定義證明上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:是一次函數(shù),其圖像過(guò)點(diǎn),且,求的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當(dāng)a=-2時(shí),求f(x)的最值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
(3)當(dāng)a=1時(shí),求f(|x|)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)對(duì)定義域內(nèi)任意,有
⑴求;
⑵判斷的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),證明:上為減函數(shù);
(2)若有兩個(gè)極值點(diǎn)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案