【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計(jì)局隨機(jī)地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購菜狀況,其數(shù)據(jù)如下:
每周網(wǎng)上買菜次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 總計(jì) |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
總計(jì) | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周網(wǎng)上買菜次數(shù)超過3次的用戶稱為“網(wǎng)上買菜熱愛者”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān)?
(2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“網(wǎng)上買菜達(dá)人”,視頻率為概率,在我市所有“網(wǎng)上買菜達(dá)人”中,隨機(jī)抽取4名用戶求既有男“網(wǎng)上買菜達(dá)人”又有女“網(wǎng)上買菜達(dá)人”的概率.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)在犯錯(cuò)誤概率不超過0.005的前提下,能認(rèn)為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān)(2)
【解析】
(1)根據(jù)題意列出列聯(lián)表,由公式計(jì)算,再由給出的對(duì)照表進(jìn)行比較,得出結(jié)論.
(2)由題意可得隨機(jī)抽取1名用戶,該用戶為男“移動(dòng)支付達(dá)人”的概率為,女移動(dòng)支付達(dá)人“的概率為,然后求出抽取的4名用戶中,全為男“移動(dòng)支付達(dá)人”的概率和抽取的4名用戶中,全為女“移動(dòng)支付達(dá)人”的概率,再由對(duì)立事件的概率可求出答案.
(1)由表格數(shù)據(jù)可得列聯(lián)表如下:
非移動(dòng)支付活躍用戶 | 移動(dòng)支付活躍用戶 | 合計(jì) | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合計(jì) | 40 | 60 | 100 |
將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得:
,
所以在犯錯(cuò)誤概率不超過0.005的前提下,能認(rèn)為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān).
(2)每周使用移動(dòng)支付6次及6次以上的用戶有45戶.其中男性15戶,女性30戶.
視頻率為概率,在我市“移動(dòng)支付達(dá)人”中,隨機(jī)抽取1名用戶,
該用戶為男“移動(dòng)支付達(dá)人”的概率為,女移動(dòng)支付達(dá)人“的概率為.
抽取的4名用戶中,全為男“移動(dòng)支付達(dá)人”的概率為:
抽取的4名用戶中,全為女“移動(dòng)支付達(dá)人”的概率為:
抽取的4名用戶中,既有男“移動(dòng)支付達(dá)人”,又有女“移動(dòng)支付達(dá)人”的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;
(Ⅱ)中,,角所對(duì)的邊分別是,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某地出土的一種“釘”是由四條線段組成,其結(jié)構(gòu)能使它任意拋至水平面后,總有一端所在的直線豎直向上,并記組成該“釘”的四條線段的公共點(diǎn)為O,釘尖為.
⑴設(shè),當(dāng),,在同一水平面內(nèi)時(shí),求與平面所成角的大小結(jié)果用反三角函數(shù)值表示.
⑵若該“釘”的三個(gè)釘尖所確定的三角形的面積為,要用某種線型材料復(fù)制100枚這種“釘”損耗忽略不計(jì),共需要該種材料多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰梯形中,,,,是的中點(diǎn),將梯形繞旋轉(zhuǎn),得到梯形(如圖).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2016年到2019年的某城市方便面銷量情況如圖所示:
年份 | 2016 | 2017 | 2018 | 2019 |
時(shí)間代號(hào) | 1 | 2 | 3 | 4 |
年銷量(萬包) | 462 | 444 | 404 | 385 |
(1)根據(jù)上表,求關(guān)于的線性回歸方程.用所求回歸方程預(yù)測2020年()方便面在該城市的年銷量;
(2)某媒體記者隨機(jī)對(duì)身邊的10位朋友做了一次調(diào)查,其中3位受訪者認(rèn)為方便面是健康食品.現(xiàn)從這10人中抽取3人進(jìn)行深度訪談,記表示隨機(jī)抽取的3人認(rèn)為方便面是健康食品的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考公式:回歸方程:,其中,.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中共有8個(gè)球,其中有3個(gè)白球,5個(gè)黑球,這些球除顏色外完全相同.從袋中隨機(jī)取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補(bǔ)一個(gè)白球放入袋中.重復(fù)上述過程次后,袋中白球的個(gè)數(shù)記為.
(1)求隨機(jī)變量的概率分布及數(shù)學(xué)期望;
(2)求隨機(jī)變量的數(shù)學(xué)期望關(guān)于的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).
(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;
(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的右焦點(diǎn)F作兩條相互垂直的直線分別交橢圓于A,B,C,D四點(diǎn),則的值為( )
A. B. C. 1 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com