如果(x3-
1
2x
)n
的展開(kāi)式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,那么展開(kāi)式中的所有項(xiàng)的系數(shù)和是(  )
A.
1
64
B.0C.64D.256
(x3-
1
2x
)n
的展開(kāi)式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,
∴該二項(xiàng)式的展開(kāi)式共有7項(xiàng),n=6.
在二項(xiàng)式(x3-
1
2x
)n
中取x=1,得展開(kāi)式中的所有項(xiàng)的系數(shù)和為(13-
1
2×1
)6=(
1
2
)6=
1
64

故選:A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,則a0+a2+a4的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二項(xiàng)展開(kāi)式(2
x
-
1
x
)
4
中常數(shù)項(xiàng)為( 。
A.24B.-24C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若(1-2x)49(2-x)=a0+a1(x-1)+a2(x-1)2+…+a50(x-1)50,則a1+a2+…+a50=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若n∈N*,且n為奇數(shù),則6n+C
1n
•6n-1+C
2n
•6n-2+…+C
n-1n
•6被8除所得的余數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二項(xiàng)式(
x2
+
1
2
x
)n
(n∈N*)
n(n∈N*)展開(kāi)式中,前三項(xiàng)的二項(xiàng)式系數(shù)和是56,則展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若二項(xiàng)式(
1
x
+x23展開(kāi)式中的常數(shù)項(xiàng)為k,則直線(xiàn)y=kx與曲線(xiàn)y=x2圍成的封閉圖形的面積為( 。
A.3B.
9
2
C.9D.
27
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車(chē)從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車(chē)走公路①堵車(chē)的概率為,不堵車(chē)的概率為;汽車(chē)走公路②堵車(chē)的概率為p,不堵車(chē)的概率為1-p,若甲、乙兩輛汽車(chē)走公路①,丙汽車(chē)由于其他原因走公路②,且三輛車(chē)是否堵車(chē)相互之間沒(méi)有影響.
(1)若三輛汽車(chē)中恰有一輛汽車(chē)被堵的概率為,求走公路②堵車(chē)的概率;
(2)在(1)的條件下,求三輛汽車(chē)中被堵車(chē)輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2014·岳陽(yáng)模擬]設(shè)X是一個(gè)離散型隨機(jī)變量,其分布列為:
X
-1
0
1
P

1-2q
q2
 
則q等于(  )
A.1        B.1±        C.1-        D.1+

查看答案和解析>>

同步練習(xí)冊(cè)答案