【題目】選修4-5:不等式選講
已知,且.
(1)求的最小值;
(2)求的最大值.
【答案】(1)8;(2).
【解析】試題分析: (Ⅰ)根據(jù)題中等式由基本不等式放縮,可得的范圍,再由可得最小值; (Ⅱ)結(jié)合要求的最值可得,所以,驗(yàn)證取等條件求出最值.
試題解析:(Ⅰ)由,可得,
,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,因此的最小值為8.
(Ⅱ)因?yàn)?/span>,
所以,
當(dāng)且僅當(dāng),即且時(shí),等號(hào)成立.
點(diǎn)睛:本題考查學(xué)生利用基本不等式與和或者乘積的定值求最值的問(wèn)題,屬于中檔題目. 解此類題目的兩個(gè)技巧: (1)創(chuàng)設(shè)運(yùn)用基本不等式的條件,合理拆分項(xiàng)或配湊因式,其目的在于使等號(hào)能夠成立.(2)既要記住基本不等式的原始形式,而且還要掌握它的變形形式及公式的逆用等,例如:ab≤2≤,≤≤ (a>0,b>0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體是四棱錐,△為正三角形,.
(1)求證:;
(2)若∠,M為線段AE的中點(diǎn),求證:∥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)道,巴基斯坦由中方投資運(yùn)營(yíng)的瓜達(dá)爾港目前已通航.這是一個(gè)可以?810萬(wàn)噸油輪的深水港,通過(guò)這一港口,中國(guó)船只能夠更快到達(dá)中東和波斯灣地區(qū),這相當(dāng)于給中國(guó)平添了一條大動(dòng)脈!在打造中巴經(jīng)濟(jì)走廊協(xié)議(簡(jiǎn)稱協(xié)議)中,能源投資約340億美元,公路投資約59億美元,鐵路投資約38億美元,高架鐵路投資約16億美元,瓜達(dá)爾港投資約6.6億美元,光纖通訊投資約為0.4億美元.
有消息稱,瓜達(dá)爾港的月貨物吞吐量將是目前天津、上海兩港口月貨物吞吐量之和.表格記錄了2015年天津、上海兩港口的月吞吐量(單位:百萬(wàn)噸):
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | |
天津 | 24 | 22 | 26 | 23 | 24 | 26 | 27 | 25 | 28 | 24 | 25 | 26 |
上海 | 32 | 27 | 33 | 31 | 30 | 31 | 32 | 33 | 30 | 32 | 30 | 30 |
(Ⅰ)根據(jù)協(xié)議提供信息,用數(shù)據(jù)說(shuō)明本次協(xié)議投資重點(diǎn);
(Ⅱ)從表中12個(gè)月任選一個(gè)月,求該月天津、上海兩港口月吞吐量之和超過(guò)55百萬(wàn)噸的概率;
(Ⅲ)將(Ⅱ)中的計(jì)算結(jié)果視為瓜達(dá)爾港每個(gè)月貨物吞吐量超過(guò)55百萬(wàn)噸的概率,設(shè)為瓜達(dá)爾未來(lái)12個(gè)月的月貨物吞吐量超過(guò)55百萬(wàn)噸的個(gè)數(shù),寫出的數(shù)學(xué)期望(不需要計(jì)算過(guò)程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知拋物線,過(guò)焦點(diǎn)的動(dòng)直線交拋物線于兩點(diǎn),拋物線在兩點(diǎn)處的切線相交于點(diǎn).(Ⅰ)求的值;(Ⅱ)求點(diǎn)的縱坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某金匠以黃金為原材料加工一種飾品,經(jīng)多年的數(shù)據(jù)統(tǒng)計(jì)得知,該金匠平均每加5 個(gè)飾品中有4個(gè)成品和1個(gè)廢品,每個(gè)成品可獲利3萬(wàn)元,每個(gè)廢品損失1萬(wàn)元,假設(shè)該金匠加工每件飾品互不影響,以頻率估計(jì)概率.
(1)若金金匠加工4個(gè)飾品,求其中廢品的數(shù)量不超過(guò)1的概率;
(2)若該金匠加工了 3個(gè)飾品,求他所獲利潤(rùn)的數(shù)學(xué)期望.
(兩小問(wèn)的計(jì)算結(jié)果都用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, ,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列,寫出的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式及數(shù)列中的最大項(xiàng)與最小項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c, asinB+bcosA=c. (Ⅰ)求B;
(Ⅱ)若a=2 c,S△ABC=2 ,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長(zhǎng)為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若奇函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),又f(﹣3)=0,則不等式f(x)<0的解集為( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(0,3)
D.(﹣∞,﹣3)∪(3,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com