(本小題滿分12分)
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF∥平面CB1D1
(2)求證:平面CAA1C1⊥平面CB1D1

(1)連結(jié)BD,  EF∥平面CB1D(2)AA1⊥平面A1B1C1D1, AA1⊥B1D1,又A1C1⊥B1D1 B1D1⊥平面CAA1C1平面CAA1C1⊥平面CB1D1

解析試題分析:(1)證明:連結(jié)BD.
在長(zhǎng)方體中,對(duì)角線.
 E、F為棱AD、AB的中點(diǎn),
.
.
又B1D1平面,平面,
  EF∥平面CB1D1.                  
(2) 在長(zhǎng)方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,
 AA1⊥B1D1.
在正方形A1B1C1D1中,A1C1⊥B1D1,
 B1D1⊥平面CAA1C1.
 B1D1平面CB1D1
平面CAA1C1⊥平面CB1D1
考點(diǎn):線面平行垂直的判定
點(diǎn)評(píng):線面平行的判定:需在平面內(nèi)找一直線與面外直線平行,本題充分借助出現(xiàn)的中點(diǎn)可考慮中位線的平行關(guān)系;面面垂直的判定:要證兩面垂直需在其中一個(gè)平面內(nèi)找到另外一面的垂線,即將證明面面垂直問題轉(zhuǎn)化為證明線面垂直

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD ,AB=1,SB=.

(1)求證:BCSC;
(2) 設(shè)M為棱SA中點(diǎn),求異面直線DMSB所成角的大小
(3) 求面ASD與面BSC所成二面角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐的底面是等腰梯形,
分別是的中點(diǎn).

(1)求證:; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示在四棱錐P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,△PAB為等邊三角形。(12分)

(1)求PC和平面ABCD所成角的大。
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,QAD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知如圖(1),正三角形ABC的邊長(zhǎng)為2a,CDAB邊上的高,EF分別是ACBC邊上的點(diǎn),且滿足,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).

(Ⅰ) 求二面角B-AC-D的大;
(Ⅱ) 若異面直線ABDE所成角的余弦值為,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(diǎn),

(1)求證:平面A B1D1∥平面EFG;
(2)求證:平面AA1C⊥面EFG.
(3)求異面直線AC與A1B所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點(diǎn)。

(1)證明:平面平面;
(2)證明:平面ABE
(3)設(shè)P是BE的中點(diǎn),求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,,,,的中點(diǎn).

求證:(1)∥平面;
(2)⊥平面

查看答案和解析>>

同步練習(xí)冊(cè)答案