已知曲線的參數(shù)方程為
x=5cosθ+1
y=5sinθ-1
,則這曲線上的點(diǎn)到原點(diǎn)的距離的最小值為
 
分析:先表示出曲線上的點(diǎn)到原點(diǎn)的距離,進(jìn)而利用輔角公式化簡(jiǎn)整理,進(jìn)而根據(jù)正弦函數(shù)的性質(zhì)求得距離的最小值.
解答:解:曲線上的點(diǎn)到原點(diǎn)的距離為
(5cosθ+1) 2+(5sinθ-1) 2
=
25-10
2
sin(θ-
π
4
)+2
25-10
2
+2
=5-
2

故答案為;5-
2
點(diǎn)評(píng):本題主要考查了曲線的參數(shù)方程,兩點(diǎn)間的距離公式,輔角公式的化簡(jiǎn)求值.考查了學(xué)生數(shù)形結(jié)合的思想和轉(zhuǎn)化和化歸的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),該曲線表示
;該曲線與直線x+y-
2
=0有
1
1
個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)

選修4-4:坐標(biāo)系與參數(shù)方程選講

已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)若將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半,分別得到曲線,求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆寧夏賀蘭一中高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題


(本小題滿分10分)
已知曲線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)曲線,是否相交,若相交請(qǐng)求出公共弦的長(zhǎng),若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河北省唐山市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知曲線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程

(Ⅰ)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)曲線,是否相交,若相交請(qǐng)求出公共弦的長(zhǎng),若不相交,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案