【題目】如圖,在四棱錐中,是邊長(zhǎng)為的正方形的中心,平面,的中點(diǎn).

)求證:平面平面;

)若,求二面角的余弦值.

【答案】)詳見解析;(.

【解析】

)由正方形的性質(zhì)得出,由平面得出,進(jìn)而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;

)取的中點(diǎn),連接、,以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.

是正方形,

平面,平面

、平面,且,平面 ,

平面平面平面;

)取的中點(diǎn),連接、,

是正方形,易知、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,

中,,,

、、,

設(shè)平面的一個(gè)法向量,,,

,得,令,則,.

設(shè)平面的一個(gè)法向量,,,

,得,取,得,,得.

二面角為鈍二面角,二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于PQ兩點(diǎn),且的面積為16O為坐標(biāo)原點(diǎn)).

1)求C的方程.

2)直線l經(jīng)過C的焦點(diǎn)Fl不與x軸垂直;lC交于A,B兩點(diǎn),若線段AB的垂直平分線與x軸交于點(diǎn)D,試問在x軸上是否存在點(diǎn)E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個(gè)公共點(diǎn),直線與橢圓只有一個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知?jiǎng)又本過橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問:軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個(gè)有趣的數(shù)學(xué)問題一一“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系中,設(shè)軍營所在平面區(qū)域的邊界為,河岸線所在直線方程為,假定將軍從點(diǎn)處出發(fā),只要到達(dá)軍營所在區(qū)域即回到軍營,則將軍行走的最短路程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動(dòng)漫影視制作公司長(zhǎng)期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng),同時(shí)也為公司贏得豐厚的利潤(rùn).該公司2013年至2019年的年利潤(rùn)關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤(rùn)與年份代號(hào)線性相關(guān)):

年份

2013

2014

2015

2016

2017

2018

2019

年份代號(hào)

1

2

3

4

5

6

7

年利潤(rùn) (單位:億元)

(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2020(年份代號(hào)記為)的年利潤(rùn);

(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤(rùn)的實(shí)際值大于由中線性回歸方程計(jì)算出該年利潤(rùn)的估計(jì)值時(shí),稱該年為級(jí)利潤(rùn)年,否則稱為級(jí)利潤(rùn)年.中預(yù)測(cè)的該公司2020年的年利潤(rùn)視作該年利潤(rùn)的實(shí)際值,現(xiàn)從2015年至2020年這年中隨機(jī)抽取年,求恰有年為級(jí)利潤(rùn)年的概率.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)、點(diǎn)及拋物線.

1)若直線過點(diǎn)及拋物線上一點(diǎn),當(dāng)最大時(shí)求直線的方程;

2軸上是否存在點(diǎn),使得過點(diǎn)的任一條直線與拋物線交于點(diǎn),且點(diǎn)到直線的距離相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,,求實(shí)數(shù)的值.

2)若,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn).

1)證明:平面平面;

2)求平面與平面所成的二面角大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案