對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c為常數(shù),等號右邊的運算是通常意義的加、乘運算、現(xiàn)已知1*2=4,2*3=6,且有一個非零實數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m=( 。
A、2B、3C、4D、5
分析:將1*2=4,2*3=6按照定義建立兩個等式關(guān)系,將a和b都有c進行表示,再根據(jù)對任意實數(shù)x,都有x*m=x,建立恒等式,使x前的系數(shù)相等和常數(shù)項相等求出m即可.
解答:解:
1*2=a+2b+2c=4
2*3=2a+3b+6c=6
?
a=-6c
b=2c+2
,
x*m=-6cx+(2c+2)m+cxm=(cm-6c)x+(2c+2)m=x恒成立,
cm-6c=1
(2c+2)m=0
?
c=-1
m=5

故選D
點評:本題定義一種運算,然后利用已有知識解決問題,要求學(xué)生要有較強的綜合能力.這也是今后高考命題的一個新的方向.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)一模)出租車幾何學(xué)是由十九世紀的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如(x,y)的有序?qū)崝?shù)對,直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請解決以下問題:
(1)求點A(1,3)、B(6,9)的“距離”|AB|;
(2)求線段x+y=2(x≥0,y≥0)上一點M(x,y)的距離到原點O(0,0)的“距離”;
(3)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,點A(1,3)、B(6,9),C(1,9),求經(jīng)過這三個點確定的一個“圓”的方程,并畫出大致圖象;(說明所給圖形小正方形的單位是1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測試 題型:044

已知曲線C的方程是(t+1)+2at)x+3at+b=0,直線l

方程是y=t(x-1),若對任意實數(shù)t,曲線C恒過定點P(1,0).

(1)求定值a,b;

(2)直線l截曲線C所得弦長為d,記f(t)=,則當(dāng)t為何值時,f(t)有最大值,最大值是多少?

(3)若點M()在曲線C上,又在直線l上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣西柳鐵一中2012屆高三第四次月考數(shù)學(xué)理科試題 題型:044

設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R),若函數(shù)在點(1,f(1))處的切線為4x―y―16=0,數(shù)列{an}、{bn}定義:

(1)求實數(shù)a、b的值;

(2)若將數(shù)列{bn}的前n項的和與積分別記為Sn、Tn.證明:對任意正整數(shù)n,為定值;證明:對任意正整數(shù)n,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:①方程y=kx+2可表示經(jīng)過點(0,2)的所有直線;②經(jīng)過點P(x0,y0)且與直線l垂直的直線方程一定能寫成B(xx0)-A(yy0)=0的形式;③對任意實數(shù)α,直線總與某一定圓相切;④過定圓M上的定占A作圓的動弦AB,若,則動點P的軌跡為橢圓,其中所有真命題的序號為                  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:①方程y=kx+2可表示經(jīng)過點(0,2)的所有直線;②經(jīng)過點P(x0,y0)且與直線l垂直的直線方程一定能寫成B(xx0)-A(yy0)=0的形式;③對任意實數(shù)α,直線總與某一定圓相切;④過定圓M上的定點A作圓的動弦AB,若,則動點P的軌跡為橢圓,其中所有真命題的序號為                  .

查看答案和解析>>

同步練習(xí)冊答案