【題目】已知直線l經(jīng)過直線2x+y+5=0與x﹣2y=0的交點,圓C1:x2+y2﹣2x﹣2y﹣4=0與圓C2:x2+y2+6x+2y﹣6=0相較于A、B兩點.
(1)若點P(5,0)到直線l的距離為4,求l的直線方程;
(2)若直線l與直線AB垂直,求直線l方程.
【答案】
(1)解:設直線l的方程為:2x+y﹣5+λ(x﹣2y)=0 即:(2+λ)x+(1﹣2λ)y﹣5=0
由題意: =3
整理得:2λ2﹣5λ+2=0
(2λ﹣1)( λ﹣2)=0
∴λ= 或λ=2
∴直線l的方程為:2x+y﹣5+ (x﹣2y)=0或2x+y﹣5+2(x﹣2y)=0
即:x=2或4x﹣3y﹣5=0
(2)解:圓C1:x2+y2﹣2x﹣4y﹣4=0,即(x﹣1)2+(y﹣2)2=9,
故圓心坐標為:C1(1,2)
圓C2:x2+y2+6x+2y﹣6=0 即(x+3)2+(y+1)2=16,
故圓心坐標為:C2(﹣3,﹣1)
直線C1C2與AB垂直,所以直線l與C1C2平行,可知:l的斜率為k= =
由題意: =
解得:λ=
∴直線l的方程為:2x+y﹣5+ (x﹣2y)=0
即:3x﹣4y﹣2=0
【解析】(1)設出直線的交點系方程,代入點到直線距離公式,求出λ值,可得l的直線方程;(2)直線l與直線AB垂直,即直線l與C1C2平行,由此求出λ值,可得l的直線方程;
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設曲線與軸正半軸的交點為,曲線在點處的切線方程為,
求證:對于任意的正實數(shù),都有;
(3)若方程為實數(shù))有兩個正實數(shù)根且,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,其離心率為.
(1)求橢圓的方程;
(2)直線與相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=e|x﹣a|(a∈R)滿足f(1+x)=f(﹣x),且f(x)在區(qū)間[m,m+1]上是單調(diào)函數(shù),則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位同學從A、B、C、D…共n(n≥2,n∈N+)所高校中,任選兩所參加自主招生考試(并且只能選兩所高校),但同學甲特別喜歡A高校,他除選A高校外,再在余下的n﹣1所中隨機選1所;同學乙對n所高校沒有偏愛,在n所高校中隨機選2所.若甲同學未選中D高校且乙選中D高校的概率為 .
(1)求自主招生的高校數(shù)n;
(2)記X為甲、乙兩名同學中未參加D高校自主招生考試的人數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了4次山高與相應的氣溫,并制作了對照表,由表中數(shù)據(jù),得到線性回歸方程為y=﹣2x+a,由此估計山高為72(百米)處的氣溫為( )
氣溫x(℃) | 18 | 13 | 10 | ﹣1 |
山高y(百米) | 24 | 34 | 38 | 64 |
A.﹣10
B.﹣8
C.﹣6
D.﹣4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求點M到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性. 附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
總計 |
(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2名,求至少有1名女性觀眾的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com