一動(dòng)圓與已知圓O1:(x+3)2+y2=1外切,圓O2:(x-3)2+y2=81內(nèi)切,試求動(dòng)圓圓心的軌跡方程.

思路解析:兩圓相切時(shí),圓心之間的距離與兩圓的半徑有關(guān),可以找到動(dòng)圓圓心滿足的條件.

解:兩定圓的圓心和半徑分別為O1(-3,0),r1=1;O2(3,0),r 2=9.?

設(shè)動(dòng)圓圓心為M(x,y),半徑為R,則由題設(shè)條件可得|MO1|=1+R,|MO2|=9-R.??

∴|MO1|+|MO2|=10.?

由橢圓的定義知道M在以O1、O2為焦點(diǎn)的橢圓上,且a =5,c =3.?

b2 = a2 - c= 25- 9 =16.?

故動(dòng)圓圓心的軌跡方程為+.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與已知圓O1(x+2)2+y2=1外切,與圓O2(x-2)2+y2=49內(nèi)切,
(1)求動(dòng)圓圓心的軌跡方程C;
(2)已知點(diǎn)A(2,3),O(0,0)是否存在平行于OA的直線 l與曲線C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與已知圓O1:(x+3)2+y2=1外切與圓O2:(x-3)2+y2=81內(nèi)切,試求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與已知圓O1:(x+3)2+y2=1外切,且與圓O2:(x-3)2+y2=81內(nèi)切,試求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與已知圓O1:(x+3)2+y2=1外切,與圓O2:(x-3)2+y2=81內(nèi)切,試求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案