分析:由題意,可先由數(shù)列{log
2(a
n-1)}(n∈N
*)為等差數(shù)列,且a
1=3,a
2=5得出數(shù)列{log
2(a
n-1)}的首項(xiàng)為1,公差為1,由此解出log
2(a
n-1)=1+(n-1)×1=n,從而求出a
n=1+2
n,再研究a
n+1-a
n=2
n+1+1-2
n-1=2
n即可得出
(++…+)=
(++…+),結(jié)合等比數(shù)列的求和公式計(jì)算出所求的極限即可
解答:解:數(shù)列{log
2(a
n-1)}(n∈N
*)為等差數(shù)列,且a
1=3,a
2=5
數(shù)列的公差為log
24-log
22=1,
故log
2(a
n-1)=1+(n-1)×1=n,即a
n-1=2
n,a
n=1+2
n,
∴a
n+1-a
n=2
n+1+1-2
n-1=2
n∴
(++…+)=
(++…+)=()=(1-)=1故答案為1
點(diǎn)評(píng):本題考查數(shù)列與極限的綜合,考查了等差數(shù)列的性質(zhì),通項(xiàng)公式,對(duì)數(shù)的運(yùn)算,等比數(shù)列的求和等,涉及到的知識(shí)點(diǎn)多,綜合性強(qiáng),解題的關(guān)鍵是由題設(shè)條件求出an=1+2n,難度較高