過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準(zhǔn)線上的射影為、,則∠=
A. B. C. D.
A
解析考點:拋物線的簡單性質(zhì).
分析:由拋物線的定義及內(nèi)錯角相等,可得∠AFA1=∠A1FK,同理可證∠BFB1=∠B1FK,由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,可得答案.
解:如圖:設(shè)準(zhǔn)線與x軸的交點為K,∵A、B在拋物線的準(zhǔn)線上的射影為A1、B1,
由拋物線的定義可得,AA1=AF,∴∠AA1F=∠AFA1,又由內(nèi)錯角相等得∠AA1F=∠A1FK,∴∠AFA1=∠A1FK.
同理可證∠BFB1=∠B1 FK. 由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,
∴∠A1FK+∠B1FK=∠A1FB1=90°,
故選A。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知拋物線的焦點為,關(guān)于原點的對稱點為過作軸的垂線交拋物線于兩點.有下列四個命題:①必為直角三角形;②不一定為直角三角形;③直線必與拋物線相切;④直線不一定與拋物線相切.其中正確的命題是
A.①③ | B.①④ | C.②③ | D.②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知點A(5,0)和⊙B:,P是⊙B上的動點,直線BP與線段AP的垂直平分線交于點Q,則點Q(x,y)所滿足的軌跡方程為( ▲ )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知P是橢圓上一點,F(xiàn)1、F2為橢圓兩焦點,若∠F1PF2=90°,則ΔF1PF2的面積等于( )
A.a(chǎn)2 | B.b2 | C.c2 | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com