【題目】設(shè)分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),的最大值為1.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合)則直線軸是否交于一個(gè)定點(diǎn)若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo)并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

【答案】(1) ;(2)見(jiàn)解析.

【解析】分析:(1)由題意可得,設(shè),根據(jù)的最大值可得,從而得到橢圓的方程.(2)將直線方程代入橢圓方程消去x后得到關(guān)于的二次方程,設(shè),,則,則可得經(jīng)過(guò)點(diǎn)的直線方和為,令,結(jié)合根與系數(shù)的關(guān)系可得,從而可得直線軸交于定點(diǎn)

詳解:(1)由題意得,,

,

設(shè),則

,

∴當(dāng),即點(diǎn)為橢圓長(zhǎng)軸端點(diǎn)時(shí),有最大值1,

,解得

故所求的橢圓方程為

(2)由得消去x整理得

顯然

設(shè),,則,

,.

∴經(jīng)過(guò)點(diǎn)的直線方和為,

,則,

,,

即當(dāng)

∴直線軸交于定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次人才招聘會(huì)上,假定某畢業(yè)生贏得甲公司面試機(jī)會(huì)的概率為,贏得乙、丙兩公司面試機(jī)會(huì)的概率均為,且三家公司是否讓其面試是相互獨(dú)立的,則該畢業(yè)生只贏得甲、乙兩家公司面試機(jī)會(huì)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>D,若函數(shù)滿足條件:存在,使上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙、丙、丁、戊、己6.(以下問(wèn)題用數(shù)字作答)

1)邀請(qǐng)這6人去參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的安排方法?

2)將這6人作為輔導(dǎo)員全部安排到3項(xiàng)不同的活動(dòng)中,求每項(xiàng)活動(dòng)至少安排1名輔導(dǎo)員的方法總數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)頂點(diǎn),,其外接圓為.對(duì)于線段上的任意一點(diǎn),

若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),則的半徑的取值范圍__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;

(2)(1)的結(jié)論下,若關(guān)于的不等式當(dāng)時(shí)恒成立,的值;

(3)令,若關(guān)于的方程內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.

1)求的值;

2)求函數(shù)上的解析式;

3)若關(guān)于的方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元,滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件,該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(rùn)(萬(wàn)元)表示為年促銷費(fèi)用(萬(wàn)元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)已知,證明:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案