【題目】設(shè)函數(shù)=Asin(A>0,>0,<)在處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為。

(1)求的解析式;

(2)求函數(shù) 的值域。

【答案】1=2 sin2x+);(2 ,]

【解析】

1)先確定函數(shù)的周期,可得ω的值,利用函數(shù)fx)=Asinωx+φ)(其中A0ω0,﹣πφπ)在x處取得最大值2,即可求得fx)的解析式;

2)由三角函數(shù)恒等變換的應(yīng)用化簡可得gx,,由,即可求得函數(shù)gx)的值域.

解:(1)由題意可得:fxmaxA2,

于是,

fx)=2sin2x+φ),

fx)在處取得最大值2可得:kZ),

又﹣πφπ,故

因此fx)的解析式為

2)由(1)可得:,

,,

tcos2x,可知0t1

,

從而

因此,函數(shù)gx)的值域為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,點F為拋物線C1的焦點,且拋物線C1上點P處的切線與圓C2相切于點Q.

當直線PQ的方程為時,求 拋物線C1的方程;

當正數(shù)P變化時,記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點是每行每列都成等差數(shù)列,則數(shù)字2019在表中出現(xiàn)的次數(shù)為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)若函數(shù)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;

(Ⅲ)設(shè)()是函數(shù)的兩個極值點,若,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的離心率為2,過點、斜率為1的直線與雙曲線交于、兩點且,.

(1)求雙曲線方程。

(2)設(shè)為雙曲線右支上動點,為雙曲線的右焦點,在軸負半軸上是否存在定點,使得?若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系中,圓C的極坐標方程為:

(1)求圓C的直角坐標方程;

(2)設(shè)圓C與直線交于兩點,若點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某批次的某種燈泡中,隨機地抽取200個樣品,并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如表1.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于500天的燈泡為優(yōu)等品,壽命小于300天的燈泡為次品,其余的燈泡為正品.

1

壽命(天)

頻數(shù)

頻率

20

0.10

30

a

70

0.35

b

0.15

50

0.25

合計

200

1

(1)根據(jù)表1中的數(shù)據(jù),寫出a、b的值;

(2)某人從燈泡樣品中隨機地購買了個,若這n個燈泡的等級情形恰與按三個等級分層抽樣所得的結(jié)果相同,求n的最小值;

(3)某人從這個批次的燈泡中隨機地購買了3個進行使用,若以上述頻率作為概率,用X表示此人所購買的燈泡中次品的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,.

(Ⅰ)求證:平面平面

(Ⅱ)試問在線段上是否存在一點,使銳二面角的余弦值為.若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;

)若,使)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案