已知曲線(xiàn)y=3x2+2x在點(diǎn)(1,5)處的切線(xiàn)與直線(xiàn)2ax-y-6=0平行,則a=______.
求導(dǎo)函數(shù)可得y'=6x+2,令x=1則y'=6×1+3=8
∵曲線(xiàn)y=3x2+2x在點(diǎn)(1,5)處的切線(xiàn)與直線(xiàn)2ax-y-6=0平行,
∴2a=8
∴a=4
故答案為:4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)=lnx-
1
x
,過(guò)函數(shù)f(x)的圖象上一點(diǎn)P的切線(xiàn)l與直線(xiàn)y=2x-3平行,則點(diǎn)P的坐標(biāo)為( 。
A.(1,-1)B.(2,ln2-
1
2
C.(3,ln3-
1
3
D.(4,ln4-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)y=xlnx
(1)求這個(gè)函數(shù)的導(dǎo)數(shù);
(2)求這個(gè)函數(shù)的圖象在點(diǎn)x=1處的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖為函數(shù)f(x)=
x
(0<x<1)的圖象,其在點(diǎn)M(t,f(t))處的切線(xiàn)為l,l與y軸和直線(xiàn)y=1分別交于點(diǎn)P、Q,點(diǎn)N(0,1),若△PQN的面積為b時(shí)的點(diǎn)M恰好有兩個(gè),則b的取值范圍為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=ex,g(x)=lnx.
(Ⅰ)求證:g(x)<x<f(x);
(Ⅱ)設(shè)直線(xiàn)l與f(x)、g(x)均相切,切點(diǎn)分別為(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=x-1,函數(shù)f(x)的導(dǎo)數(shù)y=f′(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,則
lim
n→+∞
n2[f(n+1)-f(n)]
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線(xiàn)的傾斜角為
π
4
,求a;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)是f′(x),在(Ⅰ)的條件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線(xiàn)y=kx+1與曲線(xiàn)y=lnx有公共點(diǎn),則實(shí)數(shù)k的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案