【題目】正方體中,與平面所成角的正弦值為__________.

【答案】

【解析】

由正方體的性質(zhì),得BB1與平面ACD1所成角即為DD1與平面ACD1所成角,過點(diǎn)D作平面ACD1的垂線交平面與點(diǎn)O,連接D1O,則∠DD1O即為DD1與平面ACD1所成角,利用等體積法求出DO長,在直角三角形中求出∠DD1O的正弦值即可.

BB1與平面ACD1所成角即為DD1與平面ACD1所成角,

過點(diǎn)D作平面ACD1的垂線交平面與點(diǎn)O,連接D1O,則∠DD1O即為DD1與平面ACD1所成角,

設(shè)正方體ABCDA1B1C1D1的棱長為1,∵VDACD1VD1ADC

××DO××1×1×1,則DO,

RtDD1O中,sinDD1O

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)與函數(shù)的圖像關(guān)于直線對稱,函數(shù) .

(Ⅰ)若,且關(guān)于的方程有且僅有一個(gè)解,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實(shí)欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“禿發(fā)”是一種常見的毛發(fā)疾病,隨著發(fā)病人群年齡結(jié)構(gòu)的年變化,逐漸引起了社會(huì)的廣泛關(guān)注.一個(gè)人出生時(shí)頭發(fā)數(shù)量約為100000根,數(shù)學(xué)徐老師建立了“禿發(fā)”函數(shù)模型作預(yù)估:一個(gè)人歲時(shí)的頭發(fā)根數(shù)為,其中稱為“脫發(fā)指數(shù)”.

1)杜老師5歲時(shí)有74375根頭發(fā),請依據(jù)模型求出杜老師的“脫發(fā)指數(shù)”的值;

2)徐老師的學(xué)生認(rèn)為“禿發(fā)”函數(shù)模型中有兩個(gè)缺點(diǎn):①頭發(fā)的根數(shù)應(yīng)該為整數(shù);②頭發(fā)的根數(shù)不能為負(fù)數(shù),徐老師感覺很有道理,將模型作了兩處修正,請寫出修正后(1)問中杜老師的“禿發(fā)”函數(shù)模型,并求出杜老師幾歲時(shí)頭發(fā)最多.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);

2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義滿足不等式|xA|BARB0)的實(shí)數(shù)x的集合叫做AB鄰域.若a+btt為正常數(shù))的a+b鄰域是一個(gè)關(guān)于原點(diǎn)對稱的區(qū)間,則a2+b2的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù))

1)求的單調(diào)增區(qū)間;

2)若時(shí),的最大值為,求的值;

3)求取最大值時(shí)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列四個(gè)命題:

①函數(shù)滿足:對任意;

②函數(shù)均為奇函數(shù);

③若函數(shù)上有意義,則的取值范圍是;

④設(shè)是關(guān)于的方程,()的兩根,;

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱ABCA1B1C1中,側(cè)棱AA1⊥底面A1B1C1AA11,底面三角形A1B1C1是邊長為2的正三角形,EBC中點(diǎn),則下列說法正確的是(

CC1AB1所成角的余弦值為

AB⊥平面ACC1A1

③三角形AB1E為直角三角形

A1C1∥平面AB1E

A.①②B.③④C.①③D.②④

查看答案和解析>>

同步練習(xí)冊答案