【題目】1)設0x,求函數(shù)yx32x)的最大值;

2)解關于x的不等式x2-a+1x+a0

【答案】(1)(2)見解析

【解析】

1)由題意利用二次函數(shù)的性質(zhì),求得函數(shù)的最大值.

2)不等式即(x1)(xa)<0,分類討論求得它的解集.

1)設0x,∵函數(shù)yx32x2,故當x時,函數(shù)取得最大值為

2)關于x的不等式x2﹣(a+1x+a0,即(x1)(xa)<0

a1時,不等式即 x120,不等式無解;

a1時,不等式的解集為{x|1xa}

a1時,不等式的解集為{x|ax1}

綜上可得,當a1時,不等式的解集為,當a1時,不等式的解集為{x|1xa},當a1時,不等式的解集為{x|ax1}

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強的線性相關關系,試求關于的回歸直線方程;

(2)若政府不調(diào)控,按照3月份至7月份房價的變化趨勢預測12月份該市新建住宅的銷售均價.

參考數(shù)據(jù):,;

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校選派甲、乙、丙、丁、戊5名學生代表學校參加市級“演講”和“詩詞”比賽,下面是他們的一段對話甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”;丁說:“戊參加‘詩詞’比賽”;戊說:“丁參加‘詩詞’比賽”

已知這5個人中有2人參加演講比賽,3人參加詩詞比賽,其中有2人說的不正確,且參加“演講”的2人中只有1人說的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的圖象與y=g(x)圖象有且僅有兩個不同的公共點A(x1 , y1),B(x2 , y2),則下列判斷正確的是(
A.當a<0時,x1+x2<0,y1+y2>0
B.當a<0時,x1+x2>0,y1+y2<0
C.當a>0時,x1+x2<0,y1+y2<0
D.當a>0時,x1+x2>0,y1+y2>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的新四大發(fā)明,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計

15

12

13

7

8

45

(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數(shù)據(jù)完成下列列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認為“移動支付活躍用戶”與性別有關?

移動支付活躍用戶

非移動支付活躍用戶

總計

總計

100

(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為移動支付達人”.為了做好調(diào)查工作,決定用分層抽樣的方法從“移動支付達人”中抽取6人進行問卷調(diào)查,再從這6人中選派2人參加活動求參加活動的2人性別相同的概率?

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2007全運會上兩名射擊運動員甲、乙在比賽中打出如下成績:

甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;

乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;

(1)用莖葉圖表示甲,乙兩個成績;并根據(jù)莖葉圖分析甲、乙兩人成績;

(2)分別計算兩個樣本的平均數(shù)和標準差,并根據(jù)計算結(jié)果估計哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分。每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品。

)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,的概率;

)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

查看答案和解析>>

同步練習冊答案