【題目】已知sinαcosα= ,且 <a< ,
(1)求cosα﹣sinα的值;
(2)求cosα的值.

【答案】
(1)解:∵sinαcosα= ,且 <a< ,

∴cosα﹣sinα<0,

∴(cosα﹣sinα)2=1﹣2cosαsinα= ,

則cosα﹣sinα=﹣


(2)解:∵sinαcosα= ,且 <a< ,

∴cosα+sinα>0,

∴(cosα+sinα)2=1+2cosαsinα=

∴cosα+sinα= ②,

聯(lián)立①②解得:cosα=


【解析】(1)根據(jù)α的范圍判斷出cosα﹣sinα為負數(shù),將cosα﹣sinα平方,利用完全平方公式及同角三角函數(shù)間基本關系化簡,把sinαcosα= 代入計算,開方即可求出值;(2)同理求出cosα+sinα的值,與cosα﹣sinα的值聯(lián)立即可求出cosα的值.
【考點精析】本題主要考查了同角三角函數(shù)基本關系的運用的相關知識點,需要掌握同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設直線與曲線相交于, 兩點,當變化時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}是等差數(shù)列,前n項和為Sn , {bn}是單調(diào)遞增的等比數(shù)列,b1=2是a1與a2的等差中項,a3=5,b3=a4+1,若當n≥m時,Sn≤bn恒成立,則m的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)y=cos(2x+1)的圖象,只要將函數(shù)y=cos2x的圖象(
A.向左平移1個單位
B.向右平移1個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017屆湖南省長沙市高三上學期統(tǒng)一模擬考試文數(shù)】已知過的動圓恒與軸相切,設切點為是該圓的直徑.

(Ⅰ)求點軌跡的方程;

(Ⅱ)當不在y軸上時,設直線與曲線交于另一點,該曲線在處的切線與直線交于點.求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,經(jīng)過原點的兩直線滿足,且交圓于不同兩點交, 于不同兩點,記的斜率為

(1)求的取值范圍;

(2)若四邊形為梯形,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)2axx(0,1].若f(x)(0,1]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計結果如表:

(Ⅰ)求甲流水線樣本合格的頻率;

(Ⅱ)從乙流水線上重量值落在內(nèi)的產(chǎn)品中任取2個產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從“充分不必要條件”“必要不充分條件”“充要條件”“既不充分也不必要條件”中,選出適當?shù)囊环N填空:

(1)記集合A{1p,2},B{2,3},則“p3”是“ABB”的__________________;

(2)a1”是“函數(shù)f(x)|2xa|在區(qū)間上為增函數(shù)”的________________

查看答案和解析>>

同步練習冊答案