【題目】2010-2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個(gè)人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級,電動(dòng)汽車及物聯(lián)網(wǎng)等新機(jī)遇,連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)該折線圖,下列結(jié)論正確的個(gè)數(shù)為( )
①每年市場規(guī)模量逐年增加;
②增長最快的一年為2013~2014;
③這8年的增長率約為40%;
④2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn)
A. 1B. 2C. 3D. 4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓E: 的左、右頂點(diǎn), ,E的兩個(gè)焦點(diǎn)與E的短軸兩個(gè)端點(diǎn)所構(gòu)成的四邊形是正方形.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)點(diǎn)(),記直線與E的交點(diǎn)(不同于)到x軸的距離分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形OABC中,過點(diǎn)C的直線與線段OA、OB分別相交于點(diǎn)M、N,若,;(1)求y關(guān)于x的函數(shù)解析式;(2)定義函數(shù),點(diǎn)列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)y=F(x)的圖象上,且數(shù)列{xn}是以1為首項(xiàng),0.5為公比的等比數(shù)列,O為原點(diǎn),令,是否存在點(diǎn)Q(1,m),使得?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時(shí),函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:
x | … | 0 | 1 | 2 | 3 | … | |||||||||
y | … | 1 | 2 | 1 | 0 | 1 | 2 | … |
描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示.
(1)如圖,在平面直角坐標(biāo)系中,觀察描出的這些點(diǎn)的分布,作出函數(shù)圖象;
(2)研究函數(shù)并結(jié)合圖象與表格,回答下列問題:
①點(diǎn),,,在函數(shù)圖象上, , ;(填“>”,“=”或“<”)
②當(dāng)函數(shù)值時(shí),求自變量x的值;
③在直線的右側(cè)的函數(shù)圖象上有兩個(gè)不同的點(diǎn),,且,求的值;
④若直線與函數(shù)圖象有三個(gè)不同的交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①在某項(xiàng)測量中,測量結(jié)果服從正態(tài)分布,若在內(nèi)取值范圍概率為,則在內(nèi)取值的概率為;
②若,為實(shí)數(shù),則“”是“”的充分而不必要條件;
③已知命題,,則是:
,;
④中,“角,,成等差數(shù)列”是“”的充分不必要條件;其中,所有真命題的個(gè)數(shù)是( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個(gè)命題:
①f(x)是周期函數(shù);②f(x)的圖象關(guān)于x=1對稱;③f(x)在[1,2]上是減函數(shù);④f(2)=f(0).
其中正確命題的序號是____________.(請把正確命題的序號全部寫出來)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com