已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域、值域及單調(diào)區(qū)間;
(2)對(duì)于,不等式恒成立,求正實(shí)數(shù)的取值范圍.

解:(1)當(dāng)時(shí),,函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/8/1npjr3.gif" style="vertical-align:middle;" />……1分
值域?yàn)镽………………………………………………………2分
遞減區(qū)間為無遞增區(qū)間…………………………2分
(2)原命題可化為,恒成立……………………1分
,在 上恒成立,即,……3分
上遞減,當(dāng)…………………2分
因些:

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時(shí)間,上課開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實(shí)驗(yàn)表明,設(shè)提出和講述概念的時(shí)間為(單位:分),學(xué)生的接受能力為值越大,表示接受能力越強(qiáng)),
  
(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大;
(3)若一個(gè)數(shù)學(xué)難題,需要56的接受能力以及12分鐘時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的定義,且滿足對(duì)任意
有:
,的值。
判斷的奇偶性并證明
如果,且上是增函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)某網(wǎng)民用電腦上因特網(wǎng)有兩種方案可選:一是在家里上網(wǎng),費(fèi)用分為通訊費(fèi)(即電話費(fèi))與網(wǎng)絡(luò)維護(hù)費(fèi)兩部分,F(xiàn)有政策規(guī)定:通訊費(fèi)為0.02元/分鐘,但每月30元封頂(即超過30元?jiǎng)t只需交30元),網(wǎng)絡(luò)維護(hù)費(fèi)1元/小時(shí),但每月上網(wǎng)不超過10小時(shí)則要交10元;二是到附近網(wǎng)吧上網(wǎng),價(jià)格為1.5元/小時(shí)。
(1)將該網(wǎng)民在某月內(nèi)在家上網(wǎng)的費(fèi)用(元)表示為時(shí)間(小時(shí))的函數(shù);
(2)試確定在何種情況下,該網(wǎng)民在家上網(wǎng)更便宜?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/f/untro1.gif" style="vertical-align:middle;" />(為實(shí)數(shù)).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;
(3)函數(shù)上的最大值及最小值,并求出函數(shù)取最值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)為偶函數(shù).
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一個(gè)根, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù),滿足為偶函數(shù),且方程有相等實(shí)根。
(1)求的解析式;
(2)求上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算下列各式
(Ⅰ) 
(Ⅱ)

查看答案和解析>>

同步練習(xí)冊(cè)答案