【題目】如圖,在四棱錐中,底面為菱形,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)求出和的數(shù)量關(guān)系,根據(jù)勾股定理可證,又是正三角形,所以,根據(jù)直線與平面垂直的判定定理,可證平面;
(2)建立空間直角坐標(biāo)系,求出兩平面的法向量所成的余弦值,從而可以求出平面與平面所成二面角的正弦值.
(1)證明:連結(jié),,因?yàn)榈酌?/span>為菱形,,
故,又為的中點(diǎn),故.
在中,,為的中點(diǎn),所以.
設(shè),則,,
因?yàn)?/span>,
所以.(也可通過來證明),
又因?yàn)?/span>,平面,平面,
所以平面;
(2)因?yàn)?/span>,,
,
所以平面,又平面,所以.
由(1)得平面,又平面,故有,又由,
所以,,所在的直線兩兩互相垂直.
故以為坐標(biāo)原點(diǎn),以,,所在直線為軸,軸,軸如圖建系.
設(shè),則,,,.
所以,,,
由(1)知平面,
故可以取與平行的向量作為平面的法向量.
設(shè)平面的法向量為,則,
令,所以.
設(shè)平面與平面所成二面角為,而
則,所以平面與平面所成二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車智能輔助駕駛已得到廣泛應(yīng)用,其自動(dòng)剎車的工作原理是用雷達(dá)測出車輛與前方障礙物之間的距離(并結(jié)合車速轉(zhuǎn)化為所需時(shí)間),當(dāng)此距離等于報(bào)警距離時(shí)就開始報(bào)警提醒,等于危險(xiǎn)距離時(shí)就自動(dòng)剎車,某種算法(如下圖所示)將報(bào)警時(shí)間劃分為4段,分別為準(zhǔn)備時(shí)間、人的反應(yīng)時(shí)間、系統(tǒng)反應(yīng)時(shí)間、制動(dòng)時(shí)間,相應(yīng)的距離分別為、、、,當(dāng)車速為(米/秒),且時(shí),通過大數(shù)據(jù)統(tǒng)計(jì)分析得到下表(其中系數(shù)隨地面濕滑成都等路面情況而變化,).
階段 | 0、準(zhǔn)備 | 1、人的反應(yīng) | 2、系統(tǒng)反應(yīng) | 3、制動(dòng) |
時(shí)間 | 秒 | 秒 | ||
距離 | 米 | 米 |
(1)請寫出報(bào)警距離(米)與車速(米/秒)之間的函數(shù)關(guān)系式,并求時(shí),若汽車達(dá)到報(bào)警距離時(shí)人和系統(tǒng)均不采取任何制動(dòng)措施,仍以此速度行駛,則汽車撞上固定障礙物的最短時(shí)間(精確到0.1秒);
(2)若要求汽車不論在何種路面情況下行駛,報(bào)警距離均小于80米,則汽車的行駛速度應(yīng)限制在多少米/秒以下?合多少千米/小時(shí)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移個(gè)單位長度得到的圖象,若的對稱中心為坐標(biāo)原點(diǎn),則關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①的最小正周期為 ②若的最大值為2,則
③在有兩個(gè)零點(diǎn) ④在區(qū)間上單調(diào)
其中所有正確結(jié)論的標(biāo)號(hào)是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),且傾斜角為.
(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)的直角坐標(biāo);
(2)設(shè)直線與曲線相交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象向右平移個(gè)單位長度,所得圖象對應(yīng)的函數(shù)為.
(1)求函數(shù)的表達(dá)式及其周期;
(2)求函數(shù)在上的對稱軸、對稱中心及其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)變?yōu)樵瓉淼?/span>,得到曲線.
(1)求曲線的普通方程;
(2)過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求取得最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知向量,設(shè),向量.
(1)若,求向量與的夾角;
(2)若 對任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省新課改后某校為預(yù)測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.
(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.
(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com