某校夏令營有3名男同學(xué)和3名女同學(xué),其年級情況如下表:

 
一年級
二年級
三年級
男同學(xué)



女同學(xué)



 
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽(每人被選到的可能性相同)
(1)用表中字母列舉出所有可能的結(jié)果
(2)設(shè)為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.

(1)見解析(2)

解析試題分析:(1)利用列舉法將從三個(gè)年級A、B、C、X、Y、Z六名同學(xué)中任選人的所有可能結(jié)果列出來即可;(2)找出上述結(jié)果中,選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)的所有可能結(jié)果,根據(jù)古典概型公式即可求出概率.
試題解析: (1)從6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽的所有可能結(jié)果為{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15種.
(2)選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)的所有可能結(jié)果為{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6種.
因此,事件M發(fā)生的概率P(M)=.
考點(diǎn):古典概型

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

某旅游公司有甲、乙、丙三種特色產(chǎn)品,其數(shù)量分別為(單位:件),且成等差數(shù)列,F(xiàn)采用分層抽樣的方法從中抽取30 件,其中已知抽到甲產(chǎn)品的概率為,則抽到丙產(chǎn)品的件數(shù)為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)袋中裝有大小相同的黑球和白球共9個(gè),從中任取2個(gè)球,記隨機(jī)變量為取出2球中白球的個(gè)數(shù),已知
(Ⅰ)求袋中白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從天氣網(wǎng)查詢到衡水歷史天氣統(tǒng)計(jì) (2011-01-01到2014-03-01)資料如下:

自2011-01-01到2014-03-01,衡水共出現(xiàn):多云507天,晴356天,雨194天,雪36天,陰33天,其它2天,合計(jì)天數(shù)為:1128天。
本市朱先生在雨雪天的情況下,分別以的概率乘公交或打出租的方式上班(每天一次,且交通方式僅選一種),每天交通費(fèi)用相應(yīng)為2元或40元;在非雨雪天的情況下,他以90%的概率騎自行車上班,每天交通費(fèi)用0元;另外以10%的概率打出租上班,每天交通費(fèi)用20元。(以頻率代替概率,保留兩位小數(shù).參考數(shù)據(jù):
(1)求他某天打出租上班的概率;
(2)將他每天上班所需的費(fèi)用記為(單位:元),求的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校舉行綜合知識(shí)大獎(jiǎng)賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有6次答題的機(jī)會(huì),選手累計(jì)答對4題或答錯(cuò)3題即終止其初賽的比賽,答對4題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰.已知選手甲答題連續(xù)兩次答錯(cuò)的概率為(已知甲回答每道題的正確率相同,并且相互之間沒有影響).
(Ⅰ)求選手甲回答一個(gè)問題的正確率;
(Ⅱ)求選手甲可以進(jìn)入決賽的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲有大小相同的兩張卡片,標(biāo)有數(shù)字2、3;乙有大小相同的卡片四張,分別標(biāo)有1、2、3、4.
(1)求乙隨機(jī)抽取的兩張卡片的數(shù)字之和為奇數(shù)的概率;
(2)甲、乙分別取出一張卡,比較數(shù)字,數(shù)字大者獲勝,求乙獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)為了解高二學(xué)生作業(yè)量和玩電腦游戲的情況,對該地區(qū)內(nèi)所有高二學(xué)生采用隨機(jī)抽樣的方法,得到一個(gè)容量為200的樣本.統(tǒng)計(jì)數(shù)據(jù)如下:

(1)已知該地區(qū)共有高二學(xué)生42500名,根據(jù)該樣本估計(jì)總體,其中喜歡電腦游戲并認(rèn)為作業(yè)不多的人有多少名?
(2)在A,B,C,D,E,F(xiàn)六名學(xué)生中,僅有A,B兩名學(xué)生認(rèn)為作業(yè)多.如果從這六名學(xué)生中隨機(jī)抽取兩名,求至少有一名學(xué)生認(rèn)為作業(yè)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

  甲、乙兩位同學(xué)參加跳遠(yuǎn)訓(xùn)練,在相同條件下各跳了6次,統(tǒng)計(jì)平均數(shù),方差,則成績較穩(wěn)定的同學(xué)是      (填“甲”或“乙”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量a=(2,1),b=(x,y).
(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;
(2)若x∈[-1,2],y∈[-1,1],求向量a,b的夾角是鈍角的概率.

查看答案和解析>>

同步練習(xí)冊答案