【題目】等比數(shù)列的前項(xiàng)和為,已知對(duì)任意的,點(diǎn)均在函數(shù), 均為常數(shù))的圖象上.
(1)求的值;

(2)當(dāng)時(shí),記,證明:對(duì)任意的,不等式成立.

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析: (1)由已知中因?yàn)閷?duì)任意的,點(diǎn),均在函數(shù)均為常數(shù)的圖象上,根據(jù)數(shù)列中的關(guān)系,我們易得到一個(gè)關(guān)于的方程,再由數(shù)列為對(duì)等比數(shù)列即可得到的值;(2)將代入,我們可以得到數(shù)列的通項(xiàng)公式,再由,我們可給數(shù)列的通項(xiàng)公式,進(jìn)而可將不等式進(jìn)行簡(jiǎn)化,然后利用數(shù)學(xué)歸納法對(duì)其進(jìn)行證明.

試題解析:(1)由題意, ,當(dāng)時(shí), ,所以

,所以時(shí), 是以為公比的等比數(shù)列,

, , ,即,解得.

(2)當(dāng)時(shí),由(1)知,因此,

所以不等式為

①當(dāng)時(shí),左式,右式,左式>右式,所以結(jié)論成立

②假設(shè)時(shí)結(jié)論成立,即,

則當(dāng)時(shí),

要證當(dāng)時(shí)結(jié)論成立,只需證成立,

只需證: 成立,顯然成立,

∴當(dāng)時(shí), 成立,綜合①②可知不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線上任意一點(diǎn)M滿足, 其中F (-F (拋物線的焦點(diǎn)是直線yx-1與x軸的交點(diǎn), 頂點(diǎn)為原點(diǎn)O.

(I)求, 的標(biāo)準(zhǔn)方程;

(II)請(qǐng)問(wèn)是否存在直線l滿足條件:① 過(guò)的焦點(diǎn);② 與交于不同兩點(diǎn), 且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平潭國(guó)際“花式風(fēng)箏沖浪”集訓(xùn)隊(duì),在平潭龍鳳頭海濱浴場(chǎng)進(jìn)行集訓(xùn),海濱區(qū)域的某個(gè)觀測(cè)點(diǎn)觀測(cè)到該處水深(米)是隨著一天的時(shí)間呈周期性變化,某天各時(shí)刻的水深數(shù)據(jù)的近似值如下表:

0

3

6

9

12

15

18

21

24

1.5

2.4

1.5

0.6

1.4

2.4

1.6

0.6

1.5

(Ⅰ)根據(jù)表中近似數(shù)據(jù)畫(huà)出散點(diǎn)圖(坐標(biāo)系在答題卷中).觀察散點(diǎn)圖,從

, ②,③

中選擇一個(gè)合適的函數(shù)模型,并求出該擬合模型的函數(shù)解析式;(Ⅱ)為保證隊(duì)員安全,規(guī)定在一天中的5~18時(shí)且水深不低于1.05米的時(shí)候進(jìn)行訓(xùn)練,根據(jù)(Ⅰ) 中的選擇的函數(shù)解析式,試問(wèn):這一天可以安排什么時(shí)間段組織訓(xùn)練,才能確保集訓(xùn)隊(duì)員的安全。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a=(12),b=(-2,n),ab的夾角是45°.

(1) 求b;

(2) cb同向,且aca垂直,求向量c的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn).

求橢圓C的方程;

當(dāng)的面積為時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形均為菱形,,

1求證:平面;

2求證:平面

3求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為,山區(qū)邊界曲線為,計(jì)劃修建的公路為,如圖所示,的兩個(gè)端點(diǎn),測(cè)得點(diǎn)的距離分別為5千米40千米,點(diǎn)的距離分別為20千米2.5千米,以所在的直線分別為軸,建立平面直角坐標(biāo)系,假設(shè)曲線符合函數(shù)其中為常數(shù)模型

(1)的值;

(2)設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.

請(qǐng)寫(xiě)出公路長(zhǎng)度的函數(shù)解析式,并寫(xiě)出其定義域;

當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體,,是棱上的一點(diǎn)

1求證:平面;

2求證:;

3是棱的中點(diǎn),在棱上是否存在點(diǎn)使得平面?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經(jīng)過(guò)點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案