(本題滿分12分)
已知數(shù)列是遞增數(shù)列,且滿足。
(1)若是等差數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)對(duì)于(1)中,令,求數(shù)列的前項(xiàng)和

(1)(2)

解析試題分析:(1)根據(jù)題意:
 ,
                                                 ……4分
(2)

兩式相減得:
            ……12分
考點(diǎn):本小題主要考查等差數(shù)列的性質(zhì)、等差數(shù)列的通項(xiàng)公式、二次方程根與系數(shù)的關(guān)系和錯(cuò)位相減法求數(shù)列的前n項(xiàng)的和,考查學(xué)生的運(yùn)算求解能力.
點(diǎn)評(píng):等差數(shù)列和等比數(shù)列是高考中重點(diǎn)考查的兩類數(shù)列,錯(cuò)位相減法也經(jīng)?疾,要仔細(xì)計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-ak,a2k-1=(-1)k+1akk∈N*. 記數(shù)列{an}的前n項(xiàng)和為Sn.
(1)求S5,S7的值;
(2)求證:對(duì)任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知數(shù)列中,,數(shù)列滿足。
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列中的最大項(xiàng)和最小項(xiàng),并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
已知二次函數(shù)同時(shí)滿足:①不等式的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立.
設(shè)數(shù)列的前項(xiàng)和,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列中,令,,求;
(3)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號(hào)數(shù)。令為正整數(shù)),求數(shù)列的變號(hào)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知數(shù)列的前n項(xiàng)和滿足(>0,且)。數(shù)列滿足
(I)求數(shù)列的通項(xiàng)。
(II)若對(duì)一切都有,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,點(diǎn)在函數(shù)的圖象上,其中
(1)求
(2)證明數(shù)列是等比數(shù)列;
(3)設(shè),求及數(shù)列的通項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分l0分) 在等比數(shù)列中,已知.
求數(shù)列的通項(xiàng)公式;
設(shè)數(shù)列的前n項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:數(shù)列的前項(xiàng)和為,且滿足.
(Ⅰ)求:,的值;
(Ⅱ)求:數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列
項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無(wú)效)
已知曲線,從上的點(diǎn)軸的垂線,交于點(diǎn),再?gòu)狞c(diǎn)軸的垂線,交于點(diǎn),設(shè)

(1)求數(shù)列的通項(xiàng)公式;
(2)記,數(shù)列的前項(xiàng)和為,試比較的大小;
(3)記,數(shù)列的前項(xiàng)和為,試證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案