精英家教網 > 高中數學 > 題目詳情

【題目】已知圓C的圓心在射線y=2x﹣3(x≥0),且與直線y=x+2和y=﹣x+4都相切.
(1)求圓C的方程;
(2)若P(x,y)是圓C上任意一點,求x+2y的最大值.

【答案】
(1)解:設C(x,2x﹣3)(x≥0),

∵圓C與直線y=x+2和y=﹣x+4都相切,

= ,

∵x≥0,∴x=1,

∴C(1,﹣1),r=2 ,

∴圓C的方程(x﹣1)2+(y+1)2=8


(2)解:設t=x+2y,則x+2y﹣t=0,

圓心到直線的距離d= ≤2

∴﹣2 ﹣1≤t≤2 +1

∴x+2y的最大值為2 +1


【解析】(1)設C(x,2x﹣3)(x≥0),利用圓C與直線y=x+2和y=﹣x+4都相切,求出圓心與半徑,即可求圓C的方程;(2)設t=x+2y,則x+2y﹣t=0,利用圓心到直線的距離d= ≤2 ,即可求x+2y的最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數f(x)=log2(x+2)的定義域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠準備生產甲、乙兩種適銷產品,每件銷售收入分別為3千元,2千元.甲、乙產品都需要在A,B兩種設備上加工,在每臺A,B上加工一件甲產品所需工時分別為1小時、2小時,加工一件乙產品所需工時分別為2小時、1小時,A、B兩種設備每月有效使用臺時數分別為400小時和500小時.如何安排生產可使月收入最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項等比數列{an}的前n項和為Sn , 且a2a3=a5 , S4=10S2
(1)求數列{an}的通項公式;
(2)設bn=(2n﹣1)an , 求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點P是邊長為1的正六邊形ABCDEF的邊上的一個動點,設 =x +y ,則x+y的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,OA、OB是兩條公路(近似看成兩條直線), ,在∠AOB內有一紀念塔P(大小忽略不計),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現經過紀念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點M、N.
(1)求紀念塔P到兩條公路交點O處的距離;
(2)若紀念塔P為小路MN的中點,求小路MN的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC+ccosB=2acosB.
(1)求角B的大。
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是各項均為正整數的等差數列,公差d∈N* , 且{an}中任意兩項之和也是該數列中的一項.
(1)若a1=4,則d的取值集合為;
(2)若a1=2m(m∈N*),則d的所有可能取值的和為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中,內角A,B,C的對邊分別為a,b,c,若a,b,c成等比數列,則 的取值范圍為

查看答案和解析>>

同步練習冊答案