設橢圓(a>b>0)的下、上頂點分別為B1,B2,若點P為橢圓上的一點,且直線PB1,PB2的斜率分別為和-1,則橢圓的離心率為(    )。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練22練習卷(解析版) 題型:解答題

設橢圓+=1(a>b>0)的左,右焦點分別為F1,F2,P(a,b)滿足|PF2|=|F1F2|.

(1)求橢圓的離心率e;

(2)設直線PF2與橢圓相交于A,B兩點.若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點,|MN|=|AB|,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練22練習卷(解析版) 題型:解答題

設橢圓+=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.·+·=8,k的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題

設橢圓(a>b>0)的兩焦點為F1、F2,若橢圓上存在一點Q,使∠F1QF2=120º,橢圓離心率e的取值范圍為(  )

A.       B.       C.      D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省高三高考極限壓軸文科數(shù)學試卷(解析版) 題型:解答題

設橢圓C:(“a>b〉0)的左焦點為,橢圓過點P()

(1)求橢圓C的方程;

(2)已知點D(1, 0),直線l:與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:期中題 題型:解答題

設橢圓(a>b>0)的左焦點為F1(-2,0),左準線與x軸交于點N(-3,0),過點N傾斜角為30°的直線交橢圓于A,B兩點。
(1)求直線和橢圓的方程;
(2)求證:點F1(-2,0)在以線段AB為直徑的圓上。

查看答案和解析>>

同步練習冊答案