【題目】已知函數(shù) 。

(1)若曲線在點處的切線互相垂直,求 值;

(2)討論函數(shù)的零點個數(shù)。

【答案】(1);(2)見解析

【解析】試題分析:(1)根據(jù)題意,求得,由,即可求得的值;

(2)由題意,令,分、三種情形分討論,得到函數(shù)的單調(diào)性和極值,即可判斷函數(shù)的零點的個數(shù)

試題解析:

(1),

由題意,解得.

(2),令,

①當(dāng)時,在定義域上恒大于沒有零點;

②當(dāng)時,上恒成立,所以在定義域上為增函數(shù),

因為,所以有1個零點;

③當(dāng)時,

因為當(dāng)時,上為減函數(shù),

當(dāng)時,上為增函數(shù),

所以時,沒有零點;

當(dāng)時,有1個零點

當(dāng)時,

因為,所以方程在區(qū)間上有一解,

因為當(dāng)時,,所以,

所以,

因為,所以,

所以上有一解,所以方程在區(qū)間上有兩解,

綜上所述,當(dāng)時,函數(shù)沒有零點,

當(dāng)時,函數(shù)有1個零點,

當(dāng)時,函數(shù)有2個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標(biāo)原點到l1,l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,底面是以為斜邊的等腰直角三角形,,是線段上一點.

1)若的中點,求直線與平面所成角的正弦值.

2)是否存在點,使得平面平面?若存在,請指出點的位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O,直線l

若直線l與圓O交于不同的兩點A、B,當(dāng)為銳角時,求k的取值范圍;

,P是直線l上的動點,過P作圓O的兩條切線PCPD,切點為CD,則直線CD是否過定點?若是,求出定點,并說明理由.

EF、GH為圓O的兩條相互垂直的弦,垂足為,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若時,恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為 ,直線 的參數(shù)方程為 (為參數(shù)).

(I)分別求曲線的直角坐標(biāo)方程和直線 的普通方程;

(II)設(shè)曲線和直線相交于兩點,求弦長的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】故宮博物院五一期間同時舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫展”、 “趙孟頫書畫展”四個展覽.某同學(xué)決定在五一當(dāng)天的上、下午各參觀其中的一個,且至少參觀一個畫展,則不同的參觀方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線過點.

(1)若直線與曲線交于兩點,求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案