精英家教網 > 高中數學 > 題目詳情

已知,數列的前n項和為,點在曲線,且.
(1)求數列的通項公式;
(2)數列的前n項和為,且滿足,問:當為何值時,數列是等差數列.

(1);(2).

解析試題分析:解題思路:(1)根據條件尋找的遞推關系,再求通項公式;(2)利用等差數列的前項和公式的特點(等差數列的前項和是關于的一元二次函數,且常數項為0)求解.規(guī)律總結:根據數列的首項(或前幾項)和遞推公式求通項公式,要合理配湊,轉化成等差數列或等比數列進行求解;判定數列是等差數列的方法一般有:①定義法;②中項法;③通項法;④前項和法.
試題解析:(1)由于,點在曲線上,
,并且,。數列是等差數列,首項,公差d為4,

(2)由題意,得:
故:,
為等差數列,其首項為,公差為1.


若要為等差數列,則,所以:.
考點:1.數列的通項公式;2.等差數列的判定.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知數列{an}各項均為正數,其前n項和為Sn,且滿足4Sn=(an+1)2.[來
(1)求{an}的通項公式;(2)設bn=,數列{bn}的前n項和為Tn,求Tn的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列的公差大于0,且是方程的兩根,數列的前項的和為,且
(1) 求數列,的通項公式; (2) 記,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

等差數列的前項和記為.已知
(1)求通項;(2)若,求;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等比數列滿足的等差中項
(1)求數列的通項公式;(2)若求使成立的正整數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是首項的遞增等差數列,為其前項和,且
(1)求數列的通項公式;
(2)設數列滿足,為數列的前n項和.若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列的前項和為,,
(1)求數列的通項公式;
(2)若,求數列的前100項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{}中,,前項和
(1)求通項
(2)若從數列{}中依次取第項、第項、第項…第項……按原來的順序組成一個新的數列{},求數列{}的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

設數列{an},{bn}都是等差數列.若a1+b1=7,a3+b3=21,則a5+b5=________.

查看答案和解析>>

同步練習冊答案