已知函數(shù)f(x)=msinx+cosx(m>0)的最大值為2.
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間;(2)△ABC中,角A,B,C所對(duì)的邊分別是a,b,c, 且C=60°,c=3,求△ABC的面積.
(1); (2).
解析試題分析:(1)根據(jù)輔助角公式,函數(shù)的最大值為令其為2,即可求得m,利用正弦函數(shù)的單調(diào)性可求得此函數(shù)的遞減區(qū)間,找到[0,π]上的單調(diào)遞減區(qū)間即可;(2)本小題關(guān)鍵是求得邊a與b的乘積,利用正弦定理,把化為邊a與b的關(guān)系,另一方面已知C=60°,c=3,由余弦定理,可得邊a與b的另一關(guān)系,兩式聯(lián)立解得ab(當(dāng)然也可解得a與b的單個(gè)值,但計(jì)算量大),利用可求得面積.
試題解析:(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調(diào)性及周期性可得x滿足即所以f(x)在[0,π]上的單調(diào)遞減區(qū)間為
(2)設(shè)△ABC的外接圓半徑為R,由題意,得化簡(jiǎn)得sin A+sin B=2sin Asin B.由正弦定理,得① 由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9="0." ②
將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或 (舍去),故
考點(diǎn):輔助角公式, 正弦函數(shù)的單調(diào)性,正弦定理, 余弦定理,方程思想,三角形面積公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,角的對(duì)邊分別為,設(shè)S為△ABC的面積,滿足4S=.
(1)求角的大小;
(2)若且求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,內(nèi)角的對(duì)邊分別為,滿足.
(1)求角的度數(shù);
(2)若求周長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△ABC中,已知∠B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,
且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大。
(2)求sinB+sinC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a、b、c,不等式≥0對(duì)一切實(shí)數(shù)恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長(zhǎng)為6時(shí),求△ABC面積的最大值,并指出面積取最大值時(shí)△ABC的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com