(本大題13分)已知函數(shù)(為常數(shù))
(1)若在區(qū)間上單調(diào)遞減,求的取值范圍;
(2)若與直線(xiàn)相切:
(。┣的值;
(ⅱ)設(shè)在處取得極值,記點(diǎn)M (,),N(,),P(), , 若對(duì)任意的m (, x),線(xiàn)段MP與曲線(xiàn)f(x)均有異于M,P的公共點(diǎn),試確定的最小值,并證明你的結(jié)論.
(1) (2) (i)a=-3 , ii) 2.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分16分)已知函數(shù)為實(shí)常數(shù)).
(I)當(dāng)時(shí),求函數(shù)在上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)
設(shè)函數(shù)
(1)求函數(shù)極值;
(2)當(dāng)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù),其中.
(Ⅰ)若是的極值點(diǎn),求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在上的最大值是,求的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)
已知函數(shù)
(Ⅰ)求的最小值;
(Ⅱ)若在上為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:….
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù).
(Ⅰ)若,求曲線(xiàn)在處切線(xiàn)的斜率;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意,均存在,使得 ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在與時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(x∈R).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),證明當(dāng)x>1時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)、與點(diǎn),設(shè)函數(shù)
在和處取到極值,其中,。
(1)求的二次項(xiàng)系數(shù)的值;
(2)比較的大。ㄒ蟀磸男〉酱笈帕校
(3)若,且過(guò)原點(diǎn)存在兩條互相垂直的直線(xiàn)與曲線(xiàn)均相切,求。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com