【題目】已知橢圓的離心率為分別為左右焦點(diǎn),是橢圓上點(diǎn),且.
(1)求橢圓的方程;
(2)過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值以及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
【答案】(1);(2)存在,,.
【解析】
(1)根據(jù)橢圓定義和勾股定理可構(gòu)造方程組得到,結(jié)合離心率和橢圓關(guān)系可求得的值,進(jìn)而得到橢圓方程;
(2)由等面積法可得,設(shè),與橢圓方程聯(lián)立得到韋達(dá)定理形式,利用韋達(dá)定理表示出,得到;根據(jù)分式型函數(shù)最值的求解方法可求得,進(jìn)而得到內(nèi)切圓面積的最大值,同時(shí)確定直線方程.
(1)由題意可知:,,
由得:,,
橢圓的方程為:.
(2)設(shè),內(nèi)切圓半徑為.
由等面積法可得:,于是.
由題意可知不可能是軸,故可設(shè)直線方程為:,
聯(lián)立得:,,
.
令,則,
,當(dāng)時(shí),取得最小值,,
內(nèi)切圓的面積的最大值為:,
此時(shí),則直線方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,已知曲線C:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
(1)求曲線C的極坐標(biāo)方程,若A,B為曲線C上的兩點(diǎn),證明當(dāng)時(shí),定值;
(2)若過點(diǎn)且傾斜角為的直線l與曲線C相交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的極值點(diǎn),求f(x)的極大值;
(Ⅱ)求a的范圍,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰梯形中,,是的中點(diǎn).將沿折起后如圖2,使二面角成直二面角,設(shè)是的中點(diǎn),是棱的中
點(diǎn).
(1)求證:;
(2)求證:平面平面;
(3)判斷能否垂直于平面,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有15個(gè)省三好學(xué)生名額分給1、2、3、4共四個(gè)班級(jí),其中1班至少2個(gè)名額,2班、4班每班至少3個(gè)名額,3班最多2個(gè)名額,則共有_________種不同分配方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:()的離心率是,,分別為橢圓E的左右頂點(diǎn),B為上頂點(diǎn),的面積為2.直線l過點(diǎn)且與橢圓E交于P,Q兩點(diǎn)(P,Q異于,)
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)求的面積最大值;
(3)設(shè)直線與直線的斜率分別為,,求證:為常數(shù),并求出這個(gè)常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的左焦點(diǎn)作圓的切線交雙曲線的右支于點(diǎn),且切點(diǎn)為,已知為坐標(biāo)原點(diǎn),為線段的中點(diǎn)(點(diǎn)在切點(diǎn)的右側(cè)),若的周長為,則雙曲線的漸近線的方程為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com