9、兩相同的正四棱錐組成左圖所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有( 。
分析:由題意可知本題是圖形轉(zhuǎn)換類型的題,需要把幾何體進(jìn)行轉(zhuǎn)換,即可得到答案.
解答:解:由于兩個(gè)正四棱錐相同,所以所求幾何體的中心在正四棱錐底面正方形ABCD中心,
由對(duì)稱性知正四棱錐的高為正方體棱長(zhǎng)的一半,影響幾何體體積的只能是正四棱錐底面正方形ABCD的面積,
問(wèn)題轉(zhuǎn)化為邊長(zhǎng)為1的正方形的內(nèi)接正方形有多少種,無(wú)窮多個(gè).
故選D.
點(diǎn)評(píng):正方體是大家熟悉的幾何體,它的一些內(nèi)接或外接圖形需要一定的空間想象能力,要學(xué)會(huì)將空間問(wèn)題向平面問(wèn)題轉(zhuǎn)化,考查空間想象能力,以及正四棱錐的體積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江蘇卷)兩相同的正四棱錐組成如圖1所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有

(A)1個(gè)    。˙)2個(gè)

(C)3個(gè)    。―)無(wú)窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩相同的正四棱錐組成如圖1-1-17所示的幾何體,可放于棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有(    )

                                   圖1-1-17

A.1個(gè)        B.2個(gè)               C.3個(gè)        D.無(wú)窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(9)兩相同的正四棱錐組成如圖1所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有

(A)1個(gè)    。˙)2個(gè)

(C)3個(gè)    。―)無(wú)窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩相同的正四棱錐組成如圖1所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有

(A)1個(gè)    。˙)2個(gè)       (C)3個(gè)    。―)無(wú)窮多個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案