【題目】已知直線平面,直線平面,有以下四個(gè)命題:( )
①;②;③;④;
其中正確命題的序號(hào)為
A. ②④ B. ③④ C. ①③ D. ①④
【答案】C
【解析】
①根據(jù)線面垂直的性質(zhì)定理進(jìn)行判斷;②利用長(zhǎng)方體模型,借助于里面的線面關(guān)系進(jìn)行判斷;
③根據(jù)兩條平行線中的一條垂直于某個(gè)平面,則另一條也垂直于該平面的定理完成推理;④也可以借助于長(zhǎng)方體里面的線面關(guān)系,舉反例推翻此結(jié)論.
①一條直線垂直于兩平行平面中的一個(gè)平面,則該直線也垂直于另一平面,所以l⊥β,易知l⊥m,故①正確;
②④在長(zhǎng)方體ABCD﹣A1B1C1D1中,取底面為α,側(cè)面ADA1D1為β,直線AA1為l,AD為m,由此可以說(shuō)明②④都是錯(cuò)誤的;
③由兩條平行線中的一條垂直于某個(gè)平面,則另一條也垂直于該平面可知m⊥α,又mβ,所以α⊥β,故③正確.
故答案為:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)對(duì)任意實(shí)數(shù)x滿足f(x+2)=f(-x+2),又f(0)=3,f(2)=1.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)在[0,m]上的最大值為3,最小值為1,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題: ,命題: .
(1)若,求實(shí)數(shù)的值;
(2)若是的充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn),和直線相切,且圓心在直線上.
(1)求圓的方程;
(2)已知直線經(jīng)過(guò)原點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的單調(diào)減區(qū)間是。
(1)求的解析式;
(2)若對(duì)任意的,關(guān)于的不等式在
時(shí)有解,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)判斷函數(shù)的奇偶性并求函數(shù)的零點(diǎn);
(Ⅱ)寫出的單調(diào)區(qū)間;(只需寫出結(jié)果)
(Ⅲ)試討論方程的根的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=
(1)求f(-2);
(2)當(dāng)x<-3時(shí),求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+(2a+1)x+a2+3a(a∈R).
(Ⅰ)若函數(shù)f(x)在[0,2]上單調(diào),求a的取值范圍;
(Ⅱ)若f(x)在閉區(qū)間[m,n]上單調(diào)遞增(其中m≠n),且{y|y=f(x),m≤x≤n}=[m,n],求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com