分析 利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,注意對(duì)a分類討論.
解答 解:∵f(x)=ln(1+ax)-$\frac{2x}{x+2}$,
∴f′(x)=$\frac{a}{1+ax}$-$\frac{4}{{(x+2)}^{2}}$=$\frac{{ax}^{2}-4(1-a)}{(1+ax{)(x+2)}^{2}}$,
∵(1+ax)(x+2)2>0,
∴當(dāng)1-a≤0時(shí),即a≥1時(shí),f′(x)≥0恒成立,
則函數(shù)f(x)在(0,+∞)單調(diào)遞增,
當(dāng)0<a≤1時(shí),由f′(x)=0得x=±$\frac{2\sqrt{a(1-a)}}{a}$,
則函數(shù)f(x)在(0,$\frac{2\sqrt{a(1-a)}}{a}$)單調(diào)遞減,在($\frac{2\sqrt{a(1-a)}}{a}$,+∞)單調(diào)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2} | B. | {1}或∅ | C. | $\left\{{1,\sqrt{2},2}\right\}$ | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{3}{2}$) | B. | [$\frac{3}{2}$,+∞) | C. | (-∞,$\frac{3}{2}$] | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “|am|<|bm|”是“|a|<|b|”的充分不必要條件 | |
B. | 若¬(p∧q)為真命題,則p,q均為假命題 | |
C. | 命題“?x∈R,ax+b≤0”的否定是“?x∈R,ax+b>0” | |
D. | 若ξ~B(8,0.125),則Eξ=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\frac{1}{3},-\frac{1}{4})$和$(\frac{1}{2},1)$ | B. | $(-\frac{1}{2},-\frac{1}{3})$和$(\frac{1}{3},\frac{1}{2})$ | C. | $(-\frac{1}{2},-\frac{1}{3})$和$(\frac{1}{2},1)$ | D. | $(-\frac{1}{3},-\frac{1}{4})$和$(\frac{1}{3},\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com