【題目】△ABC的三個內(nèi)角A,B,C的對邊分別a,b,c,已知 , ,且
(1)證明sinBsinC=sinA;
(2)若a2+c2﹣b2= ac,求tanC.

【答案】
(1)證明:由 , ,且

可得 = +

由正弦定理可得 = + =1,

即有sinBcosC+cosBsinC=sinBsinC,

即為sin(B+C)=sinBsinC,

則sinBsinC=sinA;


(2)由(1) + =1,

可得tanB+tanC=tanBtanC,

由a2+c2﹣b2= ac,

由余弦定理可得,cosB= = = ,

sinB= =

可得tanB= = ,

則tanC= = =


【解析】(1)運用向量共線的坐標表示,結(jié)合正弦定理和兩角和的正弦公式,化簡整理即可得證;(2)運用余弦定理和同角的基本關(guān)系式,計算即可得到所求值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若x,y滿足約束條件 則z=y(tǒng)-x的取值范圍為( )
A.[-2,2]
B.
C.[-1,2]
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x0是f(x)= 的一個零點,x1∈(-∞,x0),x2∈(x0,0),則( )
A.f(x1)<0,f(x2)<0
B.f(x1)>0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)<0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , ,函數(shù) 的最小值為4.
(1)求 的值;
(2)求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABO中,設(shè) = , = ,| |=| |=1,C為AB上靠近A點的三等分點,過C作AB的垂線l,設(shè)P為垂線上任一點, = ,則 )=(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為半圓 的直徑,點 是半圓弧上的兩點, , .曲線 經(jīng)過點 ,且曲線 上任意點 滿足: 為定值.

(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點 的直線 與曲線 交于不同的兩點 ,求 面積最大時的直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程kx-ln x=0有兩個實數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)為奇函數(shù)的是( )
A.y=x3+3x2
B.y=
C.y=xsin x
D.y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系 中,以原點 為極點,以 軸正半軸為極軸,圓 的極坐標方程為
(1)將圓 的極坐標方程化為直角坐標方程;
(2)過點 作斜率為1直線 與圓 交于 兩點,試求 的值.

查看答案和解析>>

同步練習冊答案