某射手射擊1次擊中目標(biāo)的概率是0.9他連續(xù)射擊4次且他各次射擊是否擊中目標(biāo)是相互獨(dú)立的,則他至少擊中目標(biāo)1次的概率為_(kāi)________.
0.9999
他四次射擊未中1次的概率==,
∴他至少射擊擊中目標(biāo)1次的概率為1-=1-=0.9999.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試的數(shù)學(xué)成績(jī),乙組記錄中有一個(gè)數(shù)字模糊,無(wú)法確認(rèn).假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以a表示.
(1)若甲、乙兩個(gè)小組的數(shù)學(xué)平均成績(jī)相同,求a的值;
(2)求乙組平均成績(jī)超過(guò)甲組平均成績(jī)的概率;
(3)當(dāng)a=2時(shí),分別從甲、乙兩組中各隨機(jī)選取一名同學(xué),設(shè)這兩名同學(xué)成績(jī)之差的絕對(duì)值為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些會(huì)有缺損.按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下:
轉(zhuǎn)速x(轉(zhuǎn)/s)18161412
每小時(shí)生產(chǎn)有缺損零件數(shù)y(件)11975
(Ⅰ)作出散點(diǎn)圖;
(Ⅱ)如果y與x線性相關(guān),求出回歸方程;
(Ⅲ)如果實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為8個(gè),那么機(jī)器運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
用最小二乘法求線性回歸方程的系數(shù)公式:
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n(
.
x
)
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一次飛機(jī)航程中調(diào)查男女乘客的暈機(jī)情況,男女乘客暈機(jī)與不暈機(jī)的人數(shù)如圖所示.
(1)寫(xiě)出22列聯(lián)表;
(2)判斷是否有97.5%的把握認(rèn)為暈機(jī)與性別有關(guān)?說(shuō)明你的理由:(下面的臨界值表供參考)
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知隨機(jī)變量服從二項(xiàng)分布,則的值為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

袋中有5個(gè)黑球和3個(gè)白球,從中任取2個(gè)球,則其中至少有1個(gè)黑球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是統(tǒng)計(jì)高三年級(jí)2 000名同學(xué)某次數(shù)學(xué)考試成績(jī)的程序框圖,S代表分?jǐn)?shù),若輸出的結(jié)果是560,則這次考試數(shù)學(xué)分?jǐn)?shù)不低于90分的同學(xué)的概率是(  )
A.0.28 B.0.38 C.0.72D.0.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一袋中有5個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次任取一個(gè)記下顏色后放回,直到紅球出現(xiàn)10次時(shí)停止,設(shè)停止時(shí)共取了ξ次球,則P(ξ=12)=(  )
A.()10()2B.()9()2×
C.()9()2D.()9()2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次:在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次。某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ
0
2
3
4
5
P
0.03
P1
P2
P3
P4
 
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望E(ξ);
(3)試比較該同學(xué)選擇都在B處投籃得分超過(guò)3分與選擇上述方式投籃得分超過(guò)3分的概率的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案