【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的零點(diǎn)和極值;

(3)若對任意,都有成立,求實(shí)數(shù)的最小值.

【答案】(1);(2)零點(diǎn),極小值;(3)1.

【解析】分析:(1)求出導(dǎo)函數(shù),切線切線方程為,化簡即可;

(2)由得極值點(diǎn),討論極值點(diǎn)兩邊的正負(fù),得極值;

(3)求出上的最小值和最大值,由最大值-最小值求得,可結(jié)合要求的最小值,討論的單調(diào)性及最值.

詳解:(1)因?yàn)?/span>,所以

因?yàn)?/span>,所以曲線處的切線方程為.

(2)令,解得,

所以的零點(diǎn)為.

解得,

的情況如下:

2

0

+

所以函數(shù)時(shí),取得極小值.

(3)法一:

當(dāng)時(shí),.

當(dāng)時(shí),.

,由(2)可知的最小值為,的最大值為

所以“對任意,有恒成立”等價(jià)于

, 解得. 所以的最小值為1.

法二:當(dāng)時(shí),. 當(dāng)時(shí),.

且由(2)可知,的最小值為,

,令,則

,不符合要求,

所以. 當(dāng)時(shí),,,

所以,即滿足要求,

綜上,的最小值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個(gè)對稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品在近30天內(nèi)每件的銷售價(jià)格p()與時(shí)間t()的函數(shù)關(guān)系是該商品的日銷售量Q()與時(shí)間t()的函數(shù)關(guān)系是Q=-t40(0<t≤30,tN)

(1)求這種商品的日銷售金額的解析式;

(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈(﹣2,0)時(shí),函數(shù)f(x)的解析式為(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為梯形,平面,

中點(diǎn).

(1)求證:平面平面;

(2)線段上是否存在一點(diǎn),使平面?若存在,找出具體位置,并進(jìn)行證明:若不存在,請分析說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海南大學(xué)某餐飲中心為了解新生的飲食習(xí)慣,在全校新生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100

(Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名中文系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是拋物線的準(zhǔn)線直線與拋物線沒有公共點(diǎn),動(dòng)點(diǎn)在拋物線點(diǎn)到直線的距離之和的最小值等于2.

求拋物線的方程;

點(diǎn)在直線上運(yùn)動(dòng),過點(diǎn)做拋物線的兩條切線,切點(diǎn)分別為在平面內(nèi)是否存在定點(diǎn),使得恒成立若存在,請求出定點(diǎn)的坐標(biāo)若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>1,若對任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線C1 ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過點(diǎn)P的直線與C1 , C2都有公共點(diǎn),則稱P為“C1﹣C2型點(diǎn)”

(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;
(3)求證:圓x2+y2= 內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”

查看答案和解析>>

同步練習(xí)冊答案