【題目】求經(jīng)過點且分別滿足下列條件的直線的一般式方程.

(1)傾斜角為45°;

(2)在軸上的截距為5;

(3)在第二象限與坐標軸圍成的三角形面積為4.

【答案】(1)(2)(3)

【解析】

1)利用斜率和傾斜角的關(guān)系,可以求出斜率,可以用點斜式寫出直線方程,最后化為一般方程;

2)設(shè)出直線的斜截式方程,把點代入方程中求出斜率,進而可求出方程,化為一般式方程即可;

3)設(shè)出直線的截距式方程,利用面積公式和已知條件,可以求出所設(shè)參數(shù),即可求出直線方程,化為一般式即可.

(1)因為直線的傾斜角為45°,所以斜率,

代入點斜式,即.

(2)因為直線在軸上的截距是5,所以設(shè)直線方程為:,

代入點,故直線方程為.

(3)設(shè)所求直線方程為

,

解之得,,

所以直線方程為,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在很多人喜歡自助游,2017年孝感楊店桃花節(jié),美麗的桃花風景和人文景觀迎來眾多賓客.某調(diào)查機構(gòu)為了了解自助游是否與性別有關(guān),在孝感桃花節(jié)期間,隨機抽取了人,得如下所示的列聯(lián)表:

贊成自助游

不贊成自助游

合計

男性

女性

合計

1若在這人中,按性別分層抽取一個容量為的樣本,女性應(yīng)抽人,請將上面的列聯(lián)表補充完整,并據(jù)此資料能否在犯錯誤的概率不超過前提下認為贊成自助游是與性別有關(guān)系?

2若以抽取樣本的頻率為概率從旅游節(jié)大量游客中隨機抽取人贈送精美紀念品記這人中贊成自助游人數(shù)為,的分布列和數(shù)學期望.

:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,,分別為,的中點.

(1)求證:平面;

(2)求證:平面平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.

(1)求圓的方程;

(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;

(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點為,若直線,分別交軸于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在2019迎新年聯(lián)歡會上,為了活躍大家氣氛,設(shè)置了“摸球中獎”游戲,桌子上放置一個不透明的箱子,箱子中有3個黃色、3個白色的乒乓球(其體積、質(zhì)地完全相同)游戲規(guī)則:從箱子中隨機摸出3個球,若摸得同一顏色的3個球,摸球者中獎價值50元獎品;若摸得非同一顏色的3個球,摸球者中獎價值20元獎品.

(1)摸出的3個球為白球的概率是多少?

(2)假定有10人次參與游戲,試從概率的角度估算一下需要準備多少元錢購買獎品?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形,,平面,,,為的中點.

(Ⅰ) 求證: 平面

(Ⅱ) 求證:

(Ⅲ)若為線段上的點,當三棱錐的體積為時,求的值.

查看答案和解析>>

同步練習冊答案